
1

WORKING DOCUMENT//DRAFT

Software is Never Done:
Refactoring the Acquisition Code for Competitive Advantage

Defense Innovation Board

SUPPORTING INFORMATION
v1.0, 19 Feb 2019

This document contains the supporting information for the Defense Innovation Board (DIB) Software
Acquisition and Practices (SWAP) study. This information is in preliminary form and should be read
along with the main (draft) report.

Contents:

Appendix A. DIB Guides for Software S1

● Ten Commandments of Software
● Metrics for Software Development
● Do’s and Don’ts for Software
● Detecting Agile BS
● Is Your Development Environment Holding You Back?
● Is Your Compute Environment Holding You Back?
● Site Visit Observations and Recommendations
● How To Defend Your Agile Budget
● How to Know You’re Getting Your Money’s Worth (tentative)

Appendix B. SWAP Working Group Reports (DIB remix) S41

● Acquisition Strategy
● Appropriations
● Contracts
● Data and Metrics
● Infrastructure

● Modernization/Sustainment
● Requirements
● Security Certification/Accreditation
● Testing and Evaluation
● Workforce

Appendix C. Analysis the Old-Fashioned Way: A Look at Past DoD SW Projects S71

● Software development project analyses
● Software development data analyses

Appendix D. Replacing Augmenting CAPE with AI/ML S91

● Software life-cycle prediction model
● Software development forecasting model
● Investigation of opportunities for analytic intervention

Appendix E. Top 10 Lists: Recommendations, Obstacles, Tools S111

Appendix F. Acronyms and Catch Phrases S135

Appendix G. Required Content That Nobody Ever Reads S120

Appendix L. Legislative and Regulatory Language Templates S130

Appendix P. A modern alternative to P- and R-forms: How to Track Software Programs S150

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://media.defense.gov/2018/Jul/10/2001940937/-1/-1/0/DIB_METRICS_FOR_SOFTWARE_DEVELOPMENT_V0.9_2018.07.10.PDF
https://media.defense.gov/2018/Nov/02/2002058905/-1/-1/0/DIB_DOS_DONTS_%20SOFTWARE_V2_2018.11.02.PDF
https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049592/-1/-1/0/DIB_DEVELOPMENT_ENVIRONMENT_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049590/-1/-1/0/DIB_COMPUTE_ENVIRONMENT_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049594/-1/-1/0/DIB_CASE_STUDY_QUESTIONS_OBSERVATIONS_2018.10.09.PDF
https://docs.google.com/document/d/1dBvYKhe1R0r8_nWb9TAJvskbBllVO3j57d0Vt8hP_TE
https://docs.google.com/document/d/1dBvYKhe1R0r8_nWb9TAJvskbBllVO3j57d0Vt8hP_TE
HanesK
Cleared

2

WORKING DOCUMENT//DRAFT

3

WORKING DOCUMENT//DRAFT

Appendix B.1: Acquisition Strategy Subgroup Report
8 February 2019

This appendix examines pain points, obstacles, change ideas, and future vision for the Defense
Innovation Board (DIB) Software Acquisition and Practices (SWAP) Study in the area of Acquisition
Strategy and Oversight (i.e., Acquisition Environment). In 2017 the Office of the DASD(C3CB) under the
ASD(A) commissioned an IT acquisition study with Deloitte. The study recommended the following
attributes of an effective and efficient IT acquisition structure:

● Fast to incorporate current technology and make efficient use of Agency resources

● Flexible and adaptable to support rapid changes in technology and input from stakeholders

about capability needs

● Collaborative to seek stakeholder involvement and input to be incorporated throughout

In a previous study completed in September 2016, Deloitte also provided key findings on commercial IT
practices. Findings were taken into consideration when forming the proposals following in this appendix.
The team recognizes that DoD is falling short of the preferred attributes outlined above with the current
IT acquisition structure, in addition to multiple statutory, regulatory, and cultural issues that currently
hinder an effective and efficient DoD acquisition environment that would benefit from reform.

Pain points

Acquisition Policy Environment. The DoD lacks a cohesive acquisition policy architecture and robust
policy for software acquisition. Existing policies, to include tangential or supplemental policies that are
integral to the operation of the defense acquisition system, do not fit well together and result in
discrepancies, conflicts, and gaps. The defense acquisition system is monolithic, compiled in pieces as
needs arose instead of as an integrated and evolving environment. It has proven unable to keep up with
or remain ahead of the pace of change and technological advancements that require speed and agility.
While it has regularly been revised, the changes tend to be conservative and incremental, requiring the
agreement of too many parties protecting narrow interests and who are reluctant to relinquish authority
or evolve. The system remains focused on oversight and situational control rather than insight and trust.
The policies, practices, and documents become quickly entrenched and manifest themselves in the form
of the Department’s culture, leading to additional bureaucracy and decreased levels of organizational
trust, that are difficult to rapidly reverse. Furthermore, the environment is risk averse, seeking out what
is perceived to be the “safest” route to get things done, stifling the innovation and risk- taking that’s
required to maintain an advantage over adversaries.

As an example, one DoD weapons system program, which is implementing a DevSecOps pipeline to
enable agile capability releases, informed us it took 18 months to get approval of a Test and Evaluation
Master Plan (TEMP). The process within the TEMP drove them into sequential developmental and
operational test - which is antithetical to continuous delivery under the DevSecOps concept.

Governance and Management. The Department lacks a strategic approach that recognizes software’s
criticality as the backbone and nervous system of the Department’s mission and operations, often leading
to widespread duplication of capabilities that could be consolidated and scaled at an enterprise level
(whether Service-enterprise or OSD-enterprise). This absence of any strategy, compounded by a long-

4

WORKING DOCUMENT//DRAFT

standing lack of organizational trust in the Department, is exemplified by various situations in the software
environment. For example, the lack of reciprocity on matters such as security standards, architecture,
and compliance methods – my way is “better” (insert “less expensive,” “more efficient,” “more effective”)
than your way, or, “our requirements / processes are unique,” regardless of validity. Further, the DoD
issues separate policies on matters such as cloud, architecture, and risk management, with no unified
approach at the strategic level. Management and governance of these matters takes the form of prolific
numbers of senior working groups (or equivalent) that make few decisions but have frequent meetings.
The DoD’s lack of an overarching strategic plan for key technologies, with a robust decision making
framework that pushes responsibility and authority down to the lowest executable level, creates
inefficiency, duplication, and waste.

Organization and Culture. The DoD lacks an organizational structure with clear responsibility and
authority for software acquisition and management; there are confusing roles and responsibilities
between DoD CIO, USD(A&S), and the DoD CMO. This state of ambiguity leads to overlap, inefficiency,
and unnecessary bureaucracy; and it is replicated at the Service level. The result is a slow, rigid, siloed
organization unable to adapt in the present and plan for the future in order to maintain competitive
advantage. The DoD is not a change-ready environment and the acquisition system was not
designed for rapid change. DoD employees tend to receive change mandates rather than
participating in them. A case in point is that when DoD issues a policy, the Services will implement
their own supporting version or “supplemental guidance”, which expands the policy and introduces
multiple layers of bureaucracy, eliminating any semblance of flexibility that was intended by the
original policy issued. For example, the Department issued DoD Instruction 5000.75 in February
2018, a tailored requirements and acquisition approach for business systems. Subsequently, the
Army produced accompanying implementation guidance – 91 pages – which introduces additional
forms, templates, processes, and time constraints.

Desired (end) state An acquisition system that enables rapid delivery of cost-efficient, relevant software
capability through the application of creative compliance and fact-based critical thinking under a logical
and minimal policy framework. The Department treats software as a national security capability and
continuously retrains the workforce to be able to adapt to an ever-changing technology environment,
embraces continuous collaboration between user and developers, embraces changing requirements,
accepts and take risks, and deliver adversary- countering capabilities to the warfighter. Executing the
approach requires an end state with an efficient contracting environment; a culture that rewards
informed risk-taking and fast failures; the use of limits or guardrails instead of prescriptive
requirements that limit creativity; outcome-based metrics that focus on value vs. execution against
a plan; and a move away from traditional funding models and compliance-driven management.

Obstacles The Department operates with a general lack of urgency regarding its software – it is not
recognized or treated as a national security capability. There is an aversion to informed risk-taking
regarding new and innovative approaches to doing business and adopting emerging (or even simply
relevant) technologies, even though it’s risky, or riskier, to continue using outdated technologies that are
not secure or facing obsolescence in the face of evolving threats. Dramatic changes in policy or process
are viewed as risky yet our current ways of operation are not despite a known degradation in strategic
advantage previously enjoyed over adversaries. The inability to evolve and support rapid changes in
technology and input from stakeholders about capability needs is bred through organizational silos and
stovepipes that stifle the collaboration necessary to develop and operationalize software. Further,
stakeholder involvement is limited by following restrictive controls, timelines, and processes in a
sequential manner that impedes progress and results in a lower state of readiness. The duplication of

5

WORKING DOCUMENT//DRAFT

authorities and responsibilities among organizations both horizontally and vertically, within the defense
acquisition system only exacerbates an already complex environment where a protectionist culture is
ingrained and the workforce is not incentivized to change. In its endeavors to improve the status quo,
“help” from Congress over the past decades translates into entrenched policies, processes, and
procedures – “cultural norms” that are difficult to reverse.

Ideas for Change

Acquisition Policy Environment. Define software as a critical national security capability under Section
805 of FY16 NDAA “Use of Alternative Acquisition Paths to Acquire Critical National Security
Capabilities”. Create an acquisition policy framework that recognizes that software is ubiquitous and will
be part of all acquisition policy models. Recommend the creation of a clear, efficient acquisition path for
acquiring non-embedded software capability. Reconcile and resolve discrepancies among supplemental
policies that lead to conflicts. Consider the following tenets in development of a reformed software
acquisition policy:

● Emphasis on quickly delivering working software
● Encourage projects and pilot efforts that serve to reduce risk and complexity - fail fast
● Reimagine program structures and program offices – i.e., accommodate move to “as-a-service”

capabilities, agile, micro-services, and micro-applications
● Iterative, incremental development practices based on agile methods
● Rapid adoption of emerging technologies through piloting or prototyping
● Elimination of traditional A, B, C milestones; replaced by more sprint-centric decision points
● Elimination of arbitrary phases or merge phases to reflect rapid, agile development methods
● Tailor in requirements (statutory, regulatory – i.e., documentation) rather than tailor out; start with

a minimum set
● No big-bang testing with sequential DT/OT; move to fully integrated test approaches driven by

automated testing as well as regular, automated cybersecurity scanning
● Use a “guardrail-based” (upper / lower limit) approach for software requirements rather than

defining every requirement up front
● Track value-driven outcome metrics which can be easily and continuously generated rather than

measuring execution against a plan

Governance and Management - Software as an Asset. Develop an enterprise-level Strategic Technology
Plan that reinforces the concept of software as a national security capability. Include an approach for
enterprise-level DevSecOps and other centralized infrastructure development and management, an
approach for shared services, and applications management. The plan should recognize how disruptive
technologies will be introduced into the environment on an ongoing basis. Ensure appropriate integration
of a data strategy and the Department’s Cloud Strategy. Examine a Steering Committee approach for
management.

Organization and Culture Reform. Examine roles and responsibilities with the intent to streamline
reconcile, and resolve discrepancies for software acquisition and management among the DoD CIO,
the USD(A&S) and the CMO. Re-focus the software acquisition workforce on teaming and collaboration,
agility, improved role definition, career path advancement methods, continuing education and training
opportunities, incentivization, and empowerment. Involve them in the change process.

Proposed Legislative/Regulatory Language

6

WORKING DOCUMENT//DRAFT

Any topic with an “*” was an idea derived either wholly or in part from engagements with the
FY18 NDAA Section 873 and 874 agile pilot programs.

STATUTORY

TOPIC OVERVIEW / ISSUE STATUTE PROPOSAL

Acquisition
Strategy

Acquisition Strategies mandated
by Section 821 of the FY16 NDAA
for MDAPs, MAIS, and Major
Systems, mandates content for
acquisition strategies and
authorities, the content in terms
of how the provision is mandated
does not allow for much
flexibility and agility in content.

Section 821,
FY16 NDAA

1. Eliminate for all except
MDAPs
2. Keep overall definition of
content with the A&S (listed
as AT&L) in (b)(1) for
consistency across the
Services
3. Section (b)(2) authority
should reside with the
Service Chiefs

MDAPs Specific to the establishment of
cost, fielding, and performance
goals for MDAPs under section
2448a of title 10 introduced by
Section 807 of the FY17 NDAA.
Does not distinguish software
intensive programs from any
other type of program. Also this
provision was a reaction to
programs not following guidance
for affordability already
established in the DODI 5000.02.

Title 10 §
2448a
through
Section 807 of
the FY17
NDAA

Eliminate this provision from
statute. There is policy
which already exists that
covers this in the DoDI
5000.02

(note: DSD just signed out a
memo on this)

Nunn McCurdy Nunn McCurdy is not an effective
tool for restructuring MDAPs.
There is little evidence to show
that programs emerging from
Nunn McCurdy breaches are
drastically restructured for
improvement, and rarely are
programs cancelled. Some go
through more than one Nunn
McCurdy (though, a rare
occurrence). Perception is a
reporting / paperwork
bureaucratic exercise that does
not positively impact behavior.

10 U.S.C. §
2433

1. Consider elimination of
Nunn McCurdy
2. Consider replacement of
Nunn McCurdy w/ different
focus and outcomes
mandated
(note: requires additional
discussion)

7

WORKING DOCUMENT//DRAFT

Statutory
Definition –
Major System

The purpose and intent of this
term is confusing. The term is
separate and distinct from MDAP
and MAIS. Typically ACAT II
programs are affiliated with the
“major system” designator, but
ACAT II is a policy designation not
a statutory designation. These
systems do not do mandated
statutory reporting like MDAPs.

Per 10 U.S.C § 2302: “The term
“major system” means a
combination of elements that
will function together to produce
the capabilities required to fulfill
a mission need. The elements
may include hardware,
equipment, software or any
combination thereof, but
excludes construction or other
improvements to real property. A
system shall be considered a
major system if (A) the
conditions of section 2302d of
this title are satisfied, or (B) the
system is designated a “major
system” by the head of the
agency responsible for the
system.”

Dollar thresholds are defined in
10 U.S.C. 2302d; 41 U.S.C § 109
(the title 10 and title 41
thresholds are different)

10 U.S.C §
2302
10 U.S.C §
2302d
41 U.S.C §
109

Eliminate definition from
title 10. Other agencies may
use the definition in Title 41;
recommend keeping Title
41.

8

WORKING DOCUMENT//DRAFT

Live fire /
survivability /
lethality testing*

There is no exemption for
software-intensive programs to
conduct survivability / lethality /
live fire testing to move beyond
LRIP OR to modify these
requirements to reflect their
nature as software intensive
programs. Any covered system
may require LFT&E. Includes
major systems in the definition
which may or may not be
software programs (per the §
2302 definition). Otherwise, a
waiver must be sent to the
congressional committees before
MS B.
Note: awaiting feedback / add’l
info from AIAMD PMO

Title 10 U.S.C.
§ 2366; and
DoDI 5000.02

First, elimination of the
Major Systems from Title 10
U.S.C. § 2302 helps to solve
the identified challenges.

Further, consider language
for Title 10 2366a which
allows exemption for
software intensive
programs, where DOT&E
must justify adding the
program for oversight with
the MDA and must
streamline the process.
Note: awaiting feedback /
add’l info from AIAMD PMO

9

WORKING DOCUMENT//DRAFT

Statutory DOT&E
authority*

DOT&E has been able to
essentially stop programs as they
move through the development
(acquisition) process.
DOT&E testers are also not often
SMEs in the systems they are
conducting testing oversight on
which negatively impacts testing.
1. Statutory authority assumes
use of waterfall methodology;
relies on infrequent, major test
events instead of the continuous
testing that agile uses
2. Also assumes a separate
test team (and even
organization) as opposed to
testers being embedded in an
agile team.

Title 10 U.S.C.
§ 2399

1. DOT&E oversight is only
when requested by the SAE
or USD(A&S), or
Congressionally directed,
unless MDAP.
2. DOT&E will utilize, to the
greatest extent possible,
test data collected through
existing test methodologies
present in the program and
will not recommend or
prescribe additional
independent one-time test
events.
3. One time IOT&Es or
cybersecurity test events
will not be recommended
for software intensive
systems unless in specific
circumstances if warranted
4. Lead tester from either
DOT&E or JITC (preferably
both, if JITC is being used as
test org) must be a subject
matter expert in the subject
being tested, similar to how
qualified test pilots run test
flights (health records,
financial systems, etc.)

Clinger Cohen Act
(CCA)*

1. CCA compliance process is
outdated
2. Has become a time-
consuming burden for programs
that is layered on top of DoD’s
robust resources, requirements,
and acquisition system. This
renders many CCA requirements
redundant with other laws,
regulations, and policies.
3. Checklist-driven; provides
limited strategic value;
recognized as more of a hurdle
than an enabler to capability
delivery

40 U.S.C. §
1401(3)

Exempt the DoD from the
Clinger Cohen Act, 40 U.S.C.
1401(3)

10

WORKING DOCUMENT//DRAFT

Business Systems
Acquisition
Reform *

DoD has three different
governance entities: a business
organization (CMO), an IT
organization (CIO), and an
acquisition organization (A&S)
involved in providing oversight of
business systems.

Further, the annual certification
requirement for DBS investments
leads to unnecessary delays and
is duplicative of the POM in the
PPBE process

Title 10 U.S.C.
§ 2222

1. For the 4th estate
combine all three
authorities for DBS under
the DoD CMO. After one
year conduct assessment
and make a determination if
this should be applied to the
Services as well.
2. Eliminate the separate
funding certification process
from 10 U.S.C. § 2222; or
3. If not eliminated,
require the funding
certification to be merged
into the PPBE process

Configuration
Steering Boards
(CSB)

Must occur on at least an annual
basis per the current statute
(MDAPs). The Services tend to
implement them for programs
other than MDAPs based on
5000.02, and long-standing
cultural factors.

FY 2009
NDAA, section
814; DoDI
5000.02

Other boards (or equivalent
entities) established by the
CAE or as delegated, the
PEO or PM may fulfill the
requirement of the CSB as
long as the board (or
equivalent entity) meets at
least once a year and
addresses the requirements
in (c)(1).

11

WORKING DOCUMENT//DRAFT

Appropriations
Accounts
supporting IT
Acquisition*

Agile acquisition is hindered by
the appropriations environment.
We must allow for more
flexibility in appropriations
account definitions for IT
programs.

10 U.S.C. §
2214

Proposed language:
“Funding for software
solution acquisition does not
adhere to the same
standard development
categories as other major
programs. Funding approved
by Congress for acquisition
of a specific software
solution may be used for
research and development,
production, or sustainment
of that software solution.
Provided that the software
solution being acquired is
the same software solution
for which funding was
appropriated, that funding
may be accessed without
respect to the
appropriations account and
without engaging in transfer
of funds under the standard
reprogramming process. If
funding for one software
solution is used for a
different software solution,
it must undergo a transfer of
funds under the standard
reprogramming process.”

Expand FAR 39 to
cover all IT
purchasing
regulations*

FAR 39 is too general. Further,
for more streamlined acquisition
of IT all rules governing it would
be contained in one place.
Purchasing speed is also too
slow. Would allow for
government-wide IT best
practices and increase
commodity / government-wide
purchasing.

Title 49,
Chapter 1,
part 39

Expand the FAR 39
(Acquisition of IT) to allow
for one area to drive
technology purchases.
Unless otherwise stated, no
other FAR rules would apply

12

WORKING DOCUMENT//DRAFT

REGULATORY / POLICY

TOPIC ISSUE REG / POLICY PROPOSAL

Earned Value
Management
(EVM) *

1. Earned Value Management
(EVM) techniques are difficult
(resource intensive) to implement;
are neither designed nor well
suited to effectively on measure
an agile project; EVM cannot easily
accommodate fluid requirements
and shifting baselines.
2. EVM is lagging, not leading.
3. EVM does not measure
product quality or user
acceptance, which are hallmarks
of the agile software development
approach.

DFARS Subpart
234.201
DoDI 5000.02
Table 8
OMB Circular
A-11 (not high
priority)

Revise DFARS Subpart
234.201, DoDI 5000.02
Table 8, and OMB Circular
A-11 to remove EVM
requirement

13

WORKING DOCUMENT//DRAFT

FMR rules
supporting IT
acquisition*

IT/AIS that are not embedded in
weapons systems and/or major
end item procurements are
budgeted according to the
investment and expense criteria,
these criteria do not enable agile
acquisition or recognize the
lifecycle nature of IT

FMR Volume
2A, Chapter 1,
Section
010212(B)

Rewrite FMR Volume 2A,
Chapter 1, Section
010212(B):
1. Acknowledge that, for
the purpose of modifying
or enhancing software,
there is no technically
meaningful distinction
between RDT&E,
Procurement, and O&M.
2. Eliminate the $250,000
barrier between expenses
and investments (i.e., stop
explicitly tying to a dollar
threshold the
determination of whether
software is an expense or
an investment. If the
recommendations listed
under “Appropriations
Accounts Supporting IT
Acquisition” are adopted,
there should no longer be a
need to make this
determination for intra-
program transfers.)

14

WORKING DOCUMENT//DRAFT

DoD
Interoperability
Policy*

Directs various things that should
be reconsidered for IT/Software:
1. NR KPP required
2. DoD specific architecture
products in the DoDAF format
which are labor intensive and of
questionable value
3. Interoperability Support
Plans (ISPs) required, where DoD
CIO can declare any ISP of “special
interest”
4. Requires DT authority to
provide assessments at MS C
5. Mandates JITC to do
interoperability assessments for IT
with “joint, multinational, and
interagency interoperability
requirements”

DoDI 8330.01 Direct revision of DoDI
8330.01 or potentially
elimination of it

PfM Policy Outdated (Sept 2008). Does not
consider role of data and metrics,
additional portfolios (like NC3)
since 2008

DoDD 7045.20 Determine authority for
policy; direct revision of
DoDD 7045.20

15

WORKING DOCUMENT//DRAFT

Appendix B.2:
Appropriations Subgroup Report – released previously January 11, 2019

https://media.defense.gov/2019/Jan/16/2002080473/-1/-1/0/DIB_APPROPRIATIONS_SUBGROUP_REPORT_2019.01.15.PDF

16

WORKING DOCUMENT//DRAFT

17

WORKING DOCUMENT//DRAFT

Appendix B.3: Contracting Subgroup Report
v0.2, 6 Feb 2019

The contacting challenges faced by the DoD today are almost entirely cultural. This premise is
asserted by instances of excellence throughout the Department where effective contracting
methods have been executed (DDS, DIU, Kessel Run).

That said, rather than attempting to battle each cultural challenge as they arise, it is easier to
create a new modern acquisition platform from which to execute contracts that starts from a point
of “how should it be done” as a product of “what should we be buying”.

The historical acquisition system was created to prevent fraud. The new priority is to establish
technical superiority over our adversaries. While the prevention of fraud continues to be, and
always will be, important, as a singular priority it serves to undermine the current identified need of
speed and efficiency, which results in technical excellence for the Department.

Pain Points

Individual contracts are subject to review processes designed for large programs (of which they are
likely enabling). This limits the agility of individual contract actions, even when modular contracting
approaches are applied. In addition, the acquisition process is rigid and revolves around templates,
boards, and checklists thus limiting the ability for innovation and streamlining execution.

Contracts focus on technical requirements instead of contractual process requirements. The
contract should address overall scope (required capability), Period of Performance and price. The
technical execution requirements should be separate and managed by the product owner or other
technical lead.

Intellectual Property (IP) rights are often genetically incorporated without considering the layers of
technology often applied to a solution. A single solution might include open source, proprietary
software, and government custom code. The IP clauses should reflect all of the technology used.

Desired state

The desired state is an acquisition model that is liberated from the decades of policy and
regulations that singularly focus on fraud prevention and provides for efficiency allowing the DoD
to keep pace with the private sector and adversaries. This can be accomplished through a new
authority Congress establishes a separate new authority for contracting for software development
and IT modernization.

Obstacles

● Requires act of Congress ⇒ work with Armed Service Committees Staffers
● There is no infrastructure to support this ⇒ establish policy for guidance
● There are no Contracting Officers with specific certifications ⇒ Leverage current

certifications

18

WORKING DOCUMENT//DRAFT

● Could cause confusion on implementation (what applies, what doesn’t) ⇒ A&S issues
guidance

Ideas for change

Congress establishes a separate new authority for contracting for software development and IT
modernization

To address “Individual contracts being subject to review processes designed for large programs”:

● Treat procurements as investments “what would you pay for a possible initial capability”
(cultural).

● Manage programs at budget levels, allow programs to allocate funds at a project
investment level (policy).

● Work with appropriators to establish working capital funds so that there is not pressure to
spend funds quicker then you're ready (iterative contracts may produce more value with
less money) (statute).

● Leverage incentives to make smaller purchases to take advantage of simplified acquisition
procedures (cultural).

● Revise estimation models - source lines of code are irrelevant to future development
efforts, estimations should be based on the team size, capability delivered, and investment
focused (cultural).

● Allow for documentation and reporting substitutions to improve agility (agile reporting vs
EVM) (cultural and EVM policy).

● Provide training to contracting officers, program managers, and leadership to understand
the value and methods associated with agile and modular implementation (cultural).

To address “Contracts focus on technical requirements instead of contractual process

requirements”:
● Separate contract requirements (scope, PoP, and price) from technical requirements

(backlog, roadmap, and stories) (cultural).
● Use statement of objectives (SOO) vs statement of work (SOW) to allow the vendor to

solve the objectives how they are best suited (cultural).
● Use collaborative tools and libraries so that all content is available to all parties at all times

(cultural).
● Use an agile process to manage structure and technical requirements (cultural).
● Establish a clear definition of done for the end of a sprint (code coverage, defect rate, user

acceptance) (cultural).
● Use modular contracting to allow for regular investment decisions based on realized value

(cultural).
● Streamline acquisition processes to allow for replacing poor performing contractors

(cultural).
● Provide training to contracting officers, program managers, and leadership to understand

the value and methods associated with agile and modular implementation (cultural).

To address “Intellectual Property (IP) rights which are often genetically incorporated without
considering the layers of technology often applied to a solution”:

19

WORKING DOCUMENT//DRAFT

● Establish clear and intuitive guidelines on how and when to apply existing clauses
(cultural).

● Educate program managers and contracting officers on open source, proprietary, and
government funded code (cultural).

● Have standard clause applications for each of the above that must be excepted vs
accepted (cultural).

Proposed Legislative/Regulatory Language

(1) Authority
(a) Additional Forms of Transactions Authorized.—
The Secretary of Defense and the Secretary of each military department may enter into
transactions (other than contracts, cooperative agreements, and grants) under the authority of
this subsection for the purposes of acquiring Software Development and IT Modernization
projects.

(1) The authority of this section—

(A) may be exercised for a transaction for a prototype project, and any follow-on production
contract or transaction that is awarded pursuant to subsection (f), that is expected to cost
the Department of Defense in excess of $100,000,000 but not in excess of $500,000,000
(including all options) only upon a written determination by the senior procurement
executive for the agency as designated for the purpose of section 1702(c) of title 41, or, for
the Defense Advanced Research Projects Agency or the Missile Defense Agency, the
director of the agency that—

(i)

the requirements of subsection (d) will be met; and

(ii)

the use of the authority of this section is essential to promoting the success of the
prototype project; and

(B) may be exercised for a transaction for a Software Development and IT Modernization
project, and any follow-on production contract or transaction that is awarded pursuant to
subsection (f), that is expected to cost the Department of Defense in excess of
$500,000,000 (including all options) only if—

(i) the Under Secretary of Defense for Research and Engineering or the Under Secretary
of Defense for Acquisition and Sustainment determines in writing that—

(I)

the requirements of subsection (d) will be met; and

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7011&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-3059661-605032131&term_occur=1116&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-3059661-605032131&term_occur=1116&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7028&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/41/1702#c
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2024921563-386869926&term_occur=298&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-3059661-605032131&term_occur=1117&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7029&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b

20

WORKING DOCUMENT//DRAFT

(II)

the use of the authority of this section is essential to meet critical national security
objectives; and

(ii)

the congressional defense committees are notified in writing at least 30 days before
such authority is exercised.

(C) The authority of a senior procurement executive or director of the Defense Advanced
Research Projects Agency or Missile Defense Agency under paragraph (2)(A), and the
authority of the Under Secretaries of Defense under paragraph (2)(B), may not be
delegated.

(D)Applicability of Procurement Ethics Requirements.—
An agreement entered into under the authority of this section shall be treated as a Federal
agency procurement for the purposes of chapter 21 of title 41.

(2) Exercise of Authority by Secretary of Defense.—
In any exercise of the authority in subsection (a), the Secretary of Defense shall act through any
element of the Department of Defense that the Secretary may designate.

(A)

Subsections (e)(1)(B) and (e)(2) of such section xxxx shall not apply to projects carried out
under subsection (a).

(B)

To the maximum extent practicable, competitive procedures shall be used when entering into
agreements to carry out the prototype projects under subsection (a).

(3) Appropriate Use of Authority.—

(1) The Secretary of Defense shall ensure that no official of an agency enters into a
transaction (other than a contract, grant, or cooperative agreement) for a SW Development or
IT Modernization project under the authority of this section unless one of the following
conditions is met:

(A)

There is at least one nontraditional defense contractor or nonprofit research institution
participating to a significant extent in the prototype project.

(B)

All significant participants in the transaction other than the Federal Government are small
businesses (including small businesses participating in a program described under section
9 of the Small Business Act (15 U.S.C. 638)) or nontraditional defense contractors.

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-1119505915-386869921&term_occur=591&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2024921563-386869926&term_occur=299&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/41/chapter-21
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7012&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/uscode/text/10/2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-1875391109-791309680&term_occur=1&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032561260-548934770&term_occur=246&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=1&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=1&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=2&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=3&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/15/638
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-1875391109-791309680&term_occur=2&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b

21

WORKING DOCUMENT//DRAFT

(C)

At least one third of the total cost of the prototype project is to be paid out of funds provided
by sources other than other than [1] the Federal Government.

(D)

The senior procurement executive for the agency determines in writing that exceptional
circumstances justify the use of a transaction that provides for innovative business
arrangements or structures that would not be feasible or appropriate under a contract, or
would provide an opportunity to expand the defense supply base in a manner that would
not be practical or feasible under a contract.

(2)

(A)

Except as provided in subparagraph (B), the amounts counted for the purposes of this
subsection as being provided, or to be provided, by a party to a transaction with respect to
a SW Development or IT modernization project that is entered into under this section other
than the Federal Government do not include costs that were incurred before the date on
which the transaction becomes effective.

(B)Costs that were incurred for a SW Development or IT modernization project by a party
after the beginning of negotiations resulting in a transaction (other than a contract, grant, or
cooperative agreement) with respect to the project before the date on which the transaction
becomes effective may be counted for purposes of this subsection as being provided, or to
be provided, by the party to the transaction if and to the extent that the official responsible
for entering into the transaction determines in writing that—

(i)

the party incurred the costs in anticipation of entering into the transaction; and

(ii)

it was appropriate for the party to incur the costs before the transaction became effective
in order to ensure the successful implementation of the transaction.

(2) Payments
(a)Advance Payments.—
The authority provided under subsection (a) may be exercised without regard to section 3324 of
title 31.
(b) Recovery of Funds.—

(1)

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-3059661-605032131&term_occur=1118&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/10/2371b#fn002090
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032561260-548934770&term_occur=247&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032561260-548934770&term_occur=248&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-94849606-197992241&term_occur=705&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-94849606-197992241&term_occur=706&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-94849606-197992241&term_occur=707&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-94849606-197992241&term_occur=708&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/31/3324
https://www.law.cornell.edu/uscode/text/31/3324

22

WORKING DOCUMENT//DRAFT

A cooperative agreement for performance of basic, applied, or advanced research authorized
by a transaction authorized by subsection (a) may include a clause that requires a person or
other entity to make payments to the Department of Defense or any other department or
agency of the Federal Government as a condition for receiving support under the agreement
or other transaction.

(2)

The amount of any payment received by the Federal Government pursuant to a requirement
imposed under paragraph (1) may be credited, to the extent authorized by the Secretary of
Defense, to the appropriate account established under subsection (f). Amounts so credited
shall be merged with other funds in the account and shall be available for the same purposes
and the same period for which other funds in such account are available.

(c)Support Accounts.—
There is hereby established on the books of the Treasury separate accounts for each of the
military departments for support of Software Development and IT Modernization projects
provided for in cooperative agreements containing a clause under subsection (d) and Software
Development and IT Modernization projects provided for in transactions entered into under
subsection (a). Funds in those accounts shall be available for the payment of such support.

(3) Education and Training.
The Secretary of Defense shall—

(1)

ensure that management, technical, and contracting personnel of the Department of Defense
involved in the award or administration of transactions under this section or other innovative
forms of contracting are afforded opportunities for adequate education and training; and

(2)

establish minimum levels and requirements for continuous and experiential learning for such
personnel, including levels and requirements for acquisition certification programs.

(4) Regulations.—
The Secretary of Defense shall prescribe regulations to carry out this section.
(i) Protection of Certain Information From Disclosure.—

(1)

Disclosure of information described in paragraph (2) is not required, and may not be
compelled, under section 552 of title 5 for five years after the date on which the information is
received by the Department of Defense.

(2)

(A)

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7013&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7014&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032561260-548934770&term_occur=243&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032561260-548934770&term_occur=244&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-1503769394-428121666&term_occur=566&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7016&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/uscode/text/5/552
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7017&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371

23

WORKING DOCUMENT//DRAFT

Paragraph (1) applies to information described in subparagraph (B) that is in the records of
the Department of Defense if the information was submitted to the Department in a
competitive or noncompetitive process having the potential for resulting in an award, to the
party submitting the information, of a cooperative agreement for Software Development
and IT Modernization projects authorized by transaction authorized by subsection (a).

(B)The information referred to in subparagraph (A) is the following:

(i)

A proposal, proposal abstract, and supporting documents.

(ii)

A business plan submitted on a confidential basis.

(iii)

Technical information submitted on a confidential basis.

(5) Records
Comptroller General Access to Information.—

(1)

Each agreement entered into by an official referred to in subsection (a) to carry out a project
under that subsection that provides for payments in a total amount in excess of $5,000,000
shall include a clause that provides for the Comptroller General, in the discretion of the
Comptroller General, to examine the records of any party to the agreement or any entity that
participates in the performance of the agreement.

(2)

The requirement in paragraph (1) shall not apply with respect to a party or entity, or a
subordinate element of a party or entity that has not entered into any other agreement that
provides for audit access by a Government entity in the year prior to the date of the
agreement.

(3)

(A)

The right provided to the Comptroller General in a clause of an agreement under
paragraph (1) is limited as provided in subparagraph (B) in the case of a party to the
agreement, an entity that participates in the performance of the agreement, or a
subordinate element of that party or entity if the only agreements or other transactions that
the party, entity, or subordinate element entered into with Government entities in the year
prior to the date of that agreement are cooperative agreements or transactions that were
entered into under this section or section xxxx of this title.

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7018&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7019&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-992843022-310880923&term_occur=320&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-992843022-310880923&term_occur=321&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371
https://www.law.cornell.edu/uscode/text/10/2371

24

WORKING DOCUMENT//DRAFT

(B)

The only records of a party, other entity, or subordinate element referred to in
subparagraph (A) that the Comptroller General may examine in the exercise of the right
referred to in that subparagraph are records of the same type as the records that the
Government has had the right to examine under the audit access clauses of the previous
agreements or transactions referred to in such subparagraph that were entered into by that
particular party, entity, or subordinate element.

(4)

The head of the contracting activity that is carrying out the agreement may waive the
applicability of the requirement in paragraph (1) to the agreement if the head of the
contracting activity determines that it would not be in the public interest to apply the
requirement to the agreement. The waiver shall be effective with respect to the agreement
only if the head of the contracting activity transmits a notification of the waiver to Congress
and the Comptroller General before entering into the agreement. The notification shall include
the rationale for the determination.

(5)

The Comptroller General may not examine records pursuant to a clause included in an
agreement under paragraph (1) more than three years after the final payment is made by the
United States under the agreement.

(6) Definitions.
In this section:

(1)

The term “nontraditional defense contractor” has the meaning given the term under section
2302(9) of this title.

(2)

The term “small business” means a small business concern as defined under section 3 of the
Small Business Act (15 U.S.C. 632).

(a) Follow-on Contracts or Transactions.—

(1)

A transaction entered into under this section for a SW Development or IT modernization
project may provide for the award of a follow-on contract or transaction to the participants in
the transaction. A transaction includes all individual SW Development or IT modernization
project subprojects awarded under the transaction to a consortium of United States industry
and academic institutions.

(2)A follow-on production contract or transaction provided for in a transaction under
paragraph (1) may be awarded to the participants in the transaction without the use of
competitive procedures, notwithstanding the requirements of section 2304 of this title, if—

(A)

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032517217-428121673&term_occur=4810&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-1875391109-791309680&term_occur=3&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/10/2302#9
https://www.law.cornell.edu/uscode/text/10/2302#9
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=4&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=5&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-308593337-791309681&term_occur=6&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/15/632
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-2032517217-428121673&term_occur=4811&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/10/2304

25

WORKING DOCUMENT//DRAFT

competitive procedures were used for the selection of parties for participation in the
transaction; and

(B)

the participants in the transaction successfully completed the prototype project provided for
in the transaction.

(3)

A follow-on production contract or transaction may be awarded, pursuant to this subsection,
when the Department determines that an individual prototype or prototype subproject as part
of a consortium is successfully completed by the participants.

(4)

Award of a follow-on production contract or transaction pursuant to the terms under this
subsection is not contingent upon the successful completion of all activities within a
consortium as a condition for an award for follow-on production of a successfully completed
prototype or prototype subproject within that consortium.

(5)

Contracts and transactions entered into pursuant to this subsection may be awarded using
the authority in subsection (a), under the authority of chapter 137 of this title, or under such
procedures, terms, and conditions as the Secretary of Defense may establish by regulation.

(b) Authority To Provide Prototypes and Follow-on Production Items as Government-
furnished Equipment.—
An agreement entered into pursuant to the authority of subsection (a) or a follow-on contract or
transaction entered into pursuant to the authority of subsection (f) may provide for follow-on
items to be provided to another contractor as Government-furnished equipment.

https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-848184146-428121668&term_occur=7030&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b
https://www.law.cornell.edu/uscode/text/10/chapter-137
https://www.law.cornell.edu/definitions/uscode.php?width=840&height=800&iframe=true&def_id=10-USC-624239221-1486518327&term_occur=1082&term_src=title%3A10%3Asubtitle%3AA%3Apart%3AIV%3Achapter%3A139%3Asection%3A2371b

26

WORKING DOCUMENT//DRAFT

Proposed Policy for Implementation:

SOFTWARE DEVELOPMENT USING AGILE BEST PRACTICES.
(a) In General.—This policy governs software development activities within the Department of

Defense or military departments to be developed using agile acquisition methods as provided for
under NDAA 2020 Section XXX.

(b) Streamlined Processes.—Software development activities identified under subsection (a)

shall be developed without incorporation of the following contract or transaction requirements:

(1) Earned value management (EVM) or EVM-like reporting.

(2) Development of integrated master schedule.

(3) Development of integrated master plan.

(4) Development of technical requirement document.

(5) Development of systems requirement documents.

(6) Use of information technology infrastructure library agreements.

(7) Use of software development life cycle (methodology).

(c) Roles And Responsibilities.—

(1) IN GENERAL.—Selected activities shall include the following roles and
responsibilities:

(A) A program manager that is authorized to make all programmatic decisions within

the overarching activity objectives, including resources, funding, personnel, and contract
or transaction termination recommendations.

(B) A product owner that reports directly to the program manager and is responsible

for the overall design of the product, prioritization of roadmap elements and interpretation
of their acceptance criteria, and prioritization of the list of all features desired in the
product.

(C) An engineering lead that reports directly to the program manager and is

responsible for the implementation and operation of the software.

(D) A design lead that reports directly to the program manager and is responsible for
identifying, communicating, and visualizing user needs through a human-centered design
process.

27

WORKING DOCUMENT//DRAFT

(2) QUALIFICATIONS.—Shall establish qualifications for personnel filling the positions
described in paragraph (1) prior to their selection. The qualifications may not include a
positive education requirement and must be based on technical expertise or experience in
delivery of software products, including agile concepts.

(3) COORDINATION PLAN FOR TESTING AND CERTIFICATION ORGANIZATIONS.—

The program manager shall ensure the availability of resources for test and certification
organizations support of iterative development processes.

(d) Plan.— DPAP shall develop a plan which shall include the following elements:

(1) Definition of a product vision, identifying a succinct, clearly defined need the software

will address.

(2) Definition of a product road map, outlining a noncontractual plan that identifies short-
term and long-term product goals and specific technology solutions to help meet those goals
and adjusts to mission and user needs at the product owner’s discretion.

(3) The use of a broad agency announcement, other transaction authority, or other rapid

merit-based solicitation procedure.

(4) Identification of, and continuous engagement with, end users.

(5) Frequent and iterative end user validation of features and usability consistent with the
principles outlined in the Digital Services Playbook of the U.S. Digital Service.

(6) Use of commercial best practices for advanced computing systems, including, where

applicable—

(A) Automated testing, integration, and deployment;

(B) compliance with applicable commercial accessibility standards;

(C) capability to support modern versions of multiple, common web browsers;

(D) capability to be viewable across commonly used end user devices, including
mobile devices; and

(E) built-in application monitoring.

(e) Program Schedule.—Shall ensure that each activity includes—

(1) award processes that take no longer than three months after a requirement is

identified;

28

WORKING DOCUMENT//DRAFT

(2) planned frequent and iterative end user validation of implemented features and their
usability;

(3) delivery of a functional prototype or minimally viable product in three months or less

from award; and

(4) follow-on delivery of iterative development cycles no longer than four weeks apart,
including security testing and configuration management as applicable.

(f) Oversight Metrics.—Shall ensure that the selected activities—

(1) use a modern tracking tool to execute requirements backlog tracking; and

(2) use agile development metrics that, at a minimum, track—

(A) pace of work accomplishment;

(B) completeness of scope of testing activities (such as code coverage, fault

tolerance, and boundary testing);

(C) product quality attributes (such as major and minor defects and measures of key
performance attributes and quality attributes);

(D) delivery progress relative to the current product roadmap; and

(E) goals for each iteration.

(g) Restrictions.—

(1) USE OF FUNDS.—No funds made available for the selected activities may be

expended on estimation or evaluation using source lines of code methodologies.

(2) CONTRACT TYPES.—The Secretary of Defense may not use lowest price
technically acceptable contracting methods or cost plus contracts to carry out selected
activities under this section, and shall encourage the use of existing streamlined and flexible
contracting arrangements.

(h) Definitions.—In this section:

(1) AGILE ACQUISITION.—The term “agile acquisition” means acquisition using agile or

iterative development.

29

WORKING DOCUMENT//DRAFT

(2) AGILE OR ITERATIVE DEVELOPMENT.—The term “agile or iterative development”,
with respect to software—

(A) means acquisition pursuant to a method for delivering multiple, rapid,

incremental capabilities to the user for operational use, evaluation, and feedback not
exclusively linked to any single, proprietary method or process; and

(B) involves—

(i) the incremental development and fielding of capabilities, commonly called

“spirals”, “spins”, or “sprints”, which can be measured in a few weeks or months; and

(ii) continuous participation and collaboration by users, testers, and
requirements authorities.

30

WORKING DOCUMENT//DRAFT

Appendix B.4:
Data and Metrics Subgroup Report – released previously January 11, 2019

https://media.defense.gov/2019/Jan/15/2002080005/-1/-1/0/DIB_DATA_METRICS_SUBGROUP_INPUT_V.2_2019.01.14.PDF

31

WORKING DOCUMENT//DRAFT

Appendix B.5: Infrastructure Working Group Report
v0.1, 11 February 2019

Despite several years of effort to “move DoD to the cloud,” significant friction still exists for the DoD
to easily leverage the required compute, storage, and bandwidth infrastructure that the commercial
world so readily enjoys. The major obstacle is not at all technical, but is broadly one of accessibility:
the ability to specify, contract for, pay for, connect to, secure, and continuously monitor sufficient
modern computing infrastructure. Modern computing infrastructure refers primarily to cloud-based
computing technologies and stacks. “Cloud-based” does not necessarily presuppose commercial
cloud, but could also be on premises or hybrid cloud solutions. Similarly, “computing technologies
and stacks” can run the full spectrum from infrastructure, to platform, to function, to software as a
Service (IaaS, PaaS, FaaS, SaaS).

Pain Points and Obstacles

How much cloud do I need? Countless developers and IT professionals have wrestled with this
question, and often the answer is to “dive in,” move some apps, see what is needed, and then scale
and tweak from there. The Department’s culture hampers our ability to even take a “leap of faith”
like this. We must be able to precisely size and cost our cloud requirements before ever starting to
experiment or prototype. It should become more clear why this analysis paralysis exists as the
below pain points are outlined and considered.

How do I buy cloud? Oh, just head on over to FedRAMP, pick an approved provider, sign up and
you’re on your way… FedRAMP? Is that a cloud? What about GovCloud, cloud.gov (not the same
thing by the way), and MilCloud (is that version 1.0 or 2.0?)? What’s the difference between AWS
GovCloud and Azure Government? Can I just sign up with a credit card like a normal private citizen
and start hosting my compute and data in the cloud? Sadly, the answer is a definitive and
resounding NO! Even if you know which “government-approved” cloud you’re moving to, it’s just
not easy to contract for it or buy it.

There is not space here to answer all these rhetorical questions. For a good description of the
difficulty of buying cloud, please refer to the DoD Cloud Acquisition Guidebook at
https://www.dau.mil/tools/t/DoD-Cloud-Acquisition-Guidebook. Here the Defense Acquisition
University (DAU) outlines the multiple activities that need to be accomplished to contract for cloud
services. Starting with the dreaded IT Business Case Analysis (BCA), moving on to applying the
DoD Cloud Security Requirements Guide (SRG - more on this soon), to getting an Authority to
Operate (ATO), ensuring DISA approves of your Boundary Cloud Access Point (BCAP) and your
Cyber Security Service Provider (CCSSP), and lastly to applying the DFARS supplementary rule to
your cloud contact. No friction here right?

How do I know my cloud is secure? Easy. FedRAMP pre-evaluates and approves Cloud Service
Providers (CSSPs) for Information Impact Levels (IILs) 2, 4, 5, and 6 (don’t ask about levels 1 and
3; apparently we over specified and they aren’t necessary any longer). Whew, now things are
making sense… Not so fast, the FedRAMP IILs are for US Government cloud use, but not DoD!1

We need FedRAMP+ for DoD use, and DISA doesn’t evaluate Cloud Service Providers (CSPs),
only Cloud Service Offerings (CSOs). Huh? Be sure to go through the DoD Cloud Computing SRG,
ensure those extra security controls are in place for FedRAMP+, and you’re on your way. Again,

1 Don’t ask… we know DoD is part of the US Government.

https://www.dau.mil/tools/t/DoD-Cloud-Acquisition-Guidebook

32

WORKING DOCUMENT//DRAFT

not so fast Program Manager (or small business owner)! How are you and your customers going to
access the fancy new cloud you just finally got on contract?

How do I access my cloud? The cloud, sort of by definition, implies ease of access, right? The
National Institute of Standards and Technology (NIST) definition in SP 800-145 defines cloud
computing as “a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction.” Well, if you’re a DoD user, you need to ensure you’ve got a BCAP in place
between your application/service and your users. It’s OK and accurate to immediately envision
bottleneck and single point of failure here.2 Mis-configuring and under-provisioning BCAPs is the
norm rather than the exception, so even with all that compute and storage in the cloud that you
somehow ran the contracting gauntlet to get, you’re going to severely lack adequate bandwidth and
likely suffer from significant latency. Friction++.

How do I pay for cloud? The best part of cloud computing is that I can only pay for what I use. A
true consumption-based cost model. Just like a utility. Not so for Government and DoD though. The
Anti-Deficiency Act doesn’t allow us to pay for cloud computing like a utility. A common way around
this is to pay a third party contractor to buy the cloud service for us. This results in a situation where
we estimate the highest charges we could ever incur in a year, add a bit of padding to that (say 20-
30%), pay the third party, and we’ve paid for our cloud. What happens if we don’t use it all up by the
end of the year? Nothing (i.e. no refunds). Money spent. The third party contractor makes (quite?)
a bit of extra profit for “taking the risk off the government.” So much for consumption-based
payments.

Desired State

The ability to provision, pay for, consume, access, and monitor cloud computing (compute, storage,
and bandwidth) the same way any commercial organization does. It is understood that there are
unique DoD security requirements, but that should only affect cloud pricing (say 1.5 to 2 times
commercial, worst case), and not any of the other procedures to easily access cloud computing
technologies and resources.

Obstacles

Significant obstacles remain to easily leverage commercially equivalent compute, storage, and
bandwidth infrastructure. Contracting, security procedures (not necessarily requirements), network
access (i.e. a modern technological approach to BCAP), and billing all loom large. The most
important of these is the DoD’s inability to contract and pay for cloud computing on a consumption
basis.

Ideas for change

Establish a DoD enterprise ability to procure, provision, pay for, and use cloud that is no different
from the commercial entry points for cloud computing. The Joint Enterprise Defense Infrastructure
(JEDI) Cloud initiative is a bold attempt at this solution and should be awarded. Cloud.gov (which
is ironically hosted in GovCloud) is another promising program that is already very straightforward
to provision and buy, but is limited to IIL 2 data and applications. The objective cloud procurement
and billing contract must include the ability to truly pay for consumption of cloud services and not be

2 There are better ways to do this, like zero trust networks. The commercial world has some really good
examples and architectures that don’t require this man-in-the-middle attack called a BCAP which actually
breaks end-to-end encryption by design…

33

WORKING DOCUMENT//DRAFT

artificially limited by the Anti-Deficiency Act. Modern software demands the ability to consume and
pay for cloud services just as we do any other utility.

In addition to this, the DoD should establish a common, enterprise ability to develop software
solutions in the “easy-to-acquire-and-provision” cloud that is fully accredited by design of the
process, tools, and pipeline. Said another way, the DoD should stop the security accreditation of
individual applications, but should instead invest in accrediting the ability to produce software. The
pipeline, automated tooling, procedures, and operational monitoring and auditing of software should
be the focus and target of security accreditation, not each individual application and version of an
operating system or application.

Another essential and necessary, though not sufficient, change that must occur is to adopt modern
commercial approaches to software and system security in the cloud that does NOT involve BCAPs,
Internet Access (choke) Points (IAPs), or CSSPs that cannot be performed entirely by trusted
commercial entities. The DoD must adopt modern cloud security approaches such as zero trust
networks3, micro-segmentation, and eliminate the perimeter approach to network security and trust
that is based on assigned IP address or network connection point. Perimeter-based security cannot
scale to accommodate the bandwidth, traffic, and latency demands of modern cloud access,
applications, and services. Furthermore, it is a failed architectural practice that has proven to be
readily exploitable by adversaries and is especially vulnerable to insider threats.

3 https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/ch01.html

https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/ch01.html

34

WORKING DOCUMENT//DRAFT

Proposed Legislative/Regulatory Language

Provide explicit policy and guidance that allows cloud computing resources to be acquired and paid
for by consumption and on demand. This will require an amendment to or reconsideration of the
Anti-Deficiency Act to consider compute, storage, and bandwidth as a utility.

The following are excerpts from the 809 Panel report that can help address the recommendations
made here.

Panel 809 - Volume 3 of 3 January 2019 Implementation Legislative Branch Revise
appropriation law and budgeting rules to address the unique aspects of buying consumption-
based solutions. Recommendation 49 provides the flexibility necessary for these changes.
Executive Branch Create a new subcategory of services called consumption-based
solutions in FAR Part 37, Service Contracting, and add a reference (pointer) in FAR Part 39,
Acquisition of Information Technology.43 Agency-specific regulations, policies, and
guidance regarding service contracting are not applicable to contracts for consumption-
based solutions or hybrid contracts when the primary purpose is to procure consumption-
based solutions. The following is the definition of consumption-based solutions: Any
combination of hardware/equipment, software, and labor/services that together provide a
seamless capability that is metered and billed based on actual usage and predetermined
pricing per resource unit, and includes the ability to rapidly scale capacity up or down.
Consumption-based solutions must be measurable/meterable on a frequent interval
customary for the type of solution (e.g., hourly, daily, weekly). The contractor is required to
notify the government when consumption reaches 75 percent and 90 percent of the contract
funded amount. New services or features can be added to contracts for consumption-based
solutions at the discretion of the contracting officer without conducting a new competition,
provided the amount of these new services or features does not exceed 25 percent of the
total contract value. Update the Product Service Code (PSC) data architecture to
accommodate consumption-based solutions as a new data type. Add a new contract type
called fixed-price resource units to FAR Subpart 16.2. The fixed-price resource units
contract type: Establishes a fixed price per unit of measure (e.g., one hour of
computing resource as shown in Table 3-1 below). Sets a ceiling for the overall
contract value against which consumption of individual resource line items will be
charged. Is the preferred contract type for consumption-based solutions, and when
used for those procurements should not require special approvals. Can be
incrementally funded.

43 The term consumption-based solutions was chosen in favor of consumption-based
services because lessons learned from utility services contracting indicated that including
the word “services” would cause confusion and result in attempts to improperly apply all
Service Contracting (i.e., FAR Part 37) rules to the new purchasing category.

Sets a maximum unit price for each resource unit and captures price reductions when
commercial catalog prices are reduced. Is permitted for use under commercial item/service
acquisition in FAR Part 12: Acquisition of Commercial Items.

Develop IT solutions training and a corresponding certification/designation for DoD
acquisition professionals based on the existing DITAP, which is part of the FAC-C Core-Plus
specialization in digital services. Refresh training content and individual certifications at least
annually. Include instruction on how to conduct cost/price analysis for consumption-based
solutions. This training curriculum is for commercial IT solutions and does not apply to
weapon systems acquisition.

35

WORKING DOCUMENT//DRAFT

Note: Draft regulatory text can be found in the Implementation Details subsection at the end
of Section 3. SECTION 3: IT PROCUREMENT Due to the limited interaction between
commercial and DoD information technology (IT) markets, the two now operate at
substantially different paces of technological advancement. Because the commercial IT
market has outpaced the DoD market for decades, DoD regularly acquires outdated and
inferior technology, often at higher prices and slower rates. DoD’s slower acquisition pace
has a direct effect on warfighting capability in a defense era defined by technological edge.
Warfighters, and their support commands, are often operating with less functionality and at
higher operating costs. This market 1 GAO, Weapon System Acquisitions: Opportunities
Exist to Improve the DOD’s Portfolio Management, GAO-15-466, August 2015, Highlights,
accessed November 26, 2018, https://www.gao.gov/assets/680/672205.pdf. Report of the
Advisory Panel on Streamlining and Codifying Acquisition Regulations Volume 3 of 3 |
January 2019 Page EX-4 | Volume 3 Executive Summary segregation is caused by the vastly
different way in which DoD and the wider federal government acquire IT. Rather than
operating in the private-sector market of readily available options, DoD often creates
detailed, intricate and unique requirements for its IT systems and services. DoD must
acknowledge its acquisition system suffers from processes and procedures that are
obsolete, redundant, or unnecessary and work to move quickly enough to keep pace with
private-sector innovation. The recommendations in Section 3 offer strategies for
transforming DoD’s IT acquisition from both the top down and bottom up. Strategic revisions
to how DoD understands and acquires IT are integrated with smaller-scale changes that
restore efficiency to routine processes that have become bogged down by layers of
bureaucracy. None of the actions recommended in Section 3 alone will solve the challenges
associated with IT market segregation; however, together they offer a series of changes that
can better align DoD acquisition with private-sector practices. Allowing DoD to buy in a
manner similar to private-sector companies will reduce barriers to sellers in the marketplace.
Rec. 43: Revise acquisition regulations to enable more flexible and effective procurement of
consumption-based solutions. Rec. 44: Exempt DoD from Clinger–Cohen Act Provisions in
Title 40. Rec. 45: Create a pilot program for contracting directly with information technology
consultants through an online talent marketplace.

http://www.gao.gov/assets/680/672205.pdf
http://www.gao.gov/assets/680/672205.pdf
http://www.gao.gov/assets/680/672205.pdf

36

WORKING DOCUMENT//DRAFT

37

WORKING DOCUMENT//DRAFT

Appendix B.6: Sustainment / Modernization Subgroup Report
v0.2, 11 Feb 2019

Improving the materiel readiness of our fielded weapon systems and equipment is an imperative
across the Department in accordance with the new National Defense Strategy.4 The time is now to
shift from our traditional, hardware-centric focus and identify what core5 means for software intensive
weapon systems and associated software engineering capabilities. Software is a foundational
building material for the engineering of systems, enabling almost 100 percent of the integrated
functionality of cyber-physical systems, especially mission- and safety-critical software-reliant
systems. More simply, these systems cannot function without software.

For fielded weapon systems and military equipment, software life-cycle activities follow somewhat
predictable cycles of corrective, perfective, adaptive, and preventative modifications while major
modifications drive new periods of development. Software development activities, even those
following agile methods, encounter a phase where the program transitions from adding new features
to supporting and sustaining day-to-day use and operations. At that point, development changes
and signals a move to “sustainers” within the organic industrial base. Therefore, sustainment may
be defined as the sum of all actions and activities necessary to support a weapon system or military
equipment after it has been fielded.

Prioritizing the transition to software sustainment during requirements and engineering development
is critical to timely, effective, and affordable sustainment, regardless of how software engineering
organizations are structured and resourced. Software sustainment organizations must be engaged
and embedded at the earliest design stages to ensure we can keep pace with new capabilities as
systems become operational. Lastly, access to software source code, emphasizing an early focus
on designing for sustainment, and investment into establishing and modernizing system integration
laboratories, are just a few of the challenges faced by the DoD software enterprise.

Pain points

Applying a hardware maintenance mindset to software hinders the DoD’s ability to better leverage
the organic software engineering infrastructure. DoD maintenance policies and maintenance-related
Congressional statutes have traditionally been optimized for hardware and are difficult to change
due to long standing policies, practices, inertia, and incentives. The goal of hardware maintenance
is to repair and restore form, fit, and function. This mindset does not align well with the ever evolving
nature of software. The scope of software engineering for sustainment mitigates defects and
vulnerabilities, fact-of-life interface changes, and add new enhancements. Software is never done
and any time it is “touched,” it triggers the software engineering development life cycle which
produces a new configuration. Therefore, any system that is dependent on software to remain
operational, is always in a state of continuous engineering during sustainment (or O&S phase of the
life cycle).

DoD’s acquisition process is not emphasizing an upfront focus on design for software sustainment
and a seamless transition to organic sustainment. It is critical that software be designed to be more
affordably sustained with high assurance and the ability to integrate changes and enhancements

4 “Summary of the 2018 National Defense Strategy” (Washington, DC: Department of Defense, 2018),
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf.
5 As defined in 10 USC 2464, Core logistics capabilities.

https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf

38

WORKING DOCUMENT//DRAFT

more rapidly to provide a continual operational capability to the warfighter. Moreover, software must
be decoupled from hardware to the greatest extent possible in order to enable leveraging rapid and
continuous hardware improvements. We need to place increased emphasis in acquisition on
designing in software sustainability with a consistent emphasis on how DoD contracts for software
as well as the span of requirements, architecture, design, development, and test. Additionally, this
includes making provisions for timely access to the necessary range of software technical data to
enable timely and effective organic software engineering and rapid re-hosting. It is essential that the
DoD and industry work collaboratively to meet the increasing software sustainment demand.

Public Private Partnerships (PPPs) provide one means to leverage DoD and industry capabilities as
a team to deliver warfighter capability. However, PPPs and other options are not being considered
up front and leveraged across DoD as an inherent element of the acquisition and engineering
strategy of programs. This team strategy may facilitate mutual access to the technical data inherent
in executing the software development life cycle.

Limited visibility of the DoD organic software engineering infrastructure, capabilities, workload, and
resources. Title 10 USC 2464 establishes a key imperative for DoD to establish core Government
Owned Government Operated (GOGO) capabilities as a ready and controlled source of technical
competence and resources for national security. DoD’s focus has traditionally been on hardware
and therefore there has seen significant Service and DoD enterprise focus on hardware GOGO
capabilities and infrastructure for core. However, there has been significantly less upfront acquisition
focus and visibility on what core means for software intensive systems and the associated GOGO
software engineering capability. For the traditional DoD hardware-centric model, core capability is
based on individual weapon systems or platforms at the depot level. All systems operate
interdependently in a net-centric environment, where force structure and execution of mission
capabilities are products of a system-of-systems capability. In a software intensive environment “Go
to War” analysis of what core means as it relates to software requires more strategic thinking about
core than just focusing on individual weapon systems or platforms (aircraft, ship, tank, etc.) as
hardware. The hardware-centric focus on weapon systems likely underestimates the scope and
magnitude of what should be considered a core requirement in a software intensive systems
operational environment.

Desired State. Require government integrated software sustainment participation from the very
beginning of development activities.

Ideas for Change

● Title 10 USC 2460 should be revised to replace the term software maintenance with the term
software sustainment and a definition that is consistent with a continuous engineering
approach across the lifecycle.

● DoD should establish a capability for visibility into the size and composition of DoD’s software
sustainment portfolio, demographics, and infrastructure to better inform enterprise
investment and program decisions.

● A DoD working group should be established to leverage on-going individual Service efforts

and create a DoD contracting and acquisition guide for software and software sustainment
patterned after the approach that led to creation of the DoD Open Systems Architecture
Contracting Guide.

39

WORKING DOCUMENT//DRAFT

● Acquisition Strategy, RFP/Evaluation Criteria, and Systems Engineering Plan should
address software sustainability, re-hosting, and transition to sustainment as an acquisition
priority. The engineering strategy and plan should engage software sustainment engineers
upfront and co-locates government software sustainment engineers on the contractor
software development teams to enable effectively and timely transition to an organic
sustainment capability.

● The definition of “core capabilities” in 10 USC 2464 should be revisited in light of warfighter
dependence on software intensive systems to determine the scope of DoD’s core organic
software engineering capability, and we should engage with Congress on the proposed
revision to clarify the intent and extent of key terminology used in the current statute.

● The DoD should revise industrial base policy to include software and DoD’s organic software
engineering capabilities and infrastructure. Start enterprise planning and investment to
establish and modernize organic System Integration Labs (SILs), software engineering
environments, and technical infrastructure; invest in R&D to advance organic software
engineering infrastructure capabilities.

● Revisions to the Definition of Depot-Level Maintenance and Repair

Section 2460 of title 10, United States Code, is amended—

(1) in subsection (a), by striking “maintenance classified by the Department of Defense as of July 1,
1995” and inserting “sustainment and software engineering (including requirements definition,
architecture, design, development and coding, integration and test, and all other related software
engineering-related activities) for fielded software to correct faults and vulnerabilities, make
continuous capability upgrades, improve performance or other attributes, or adapt the product to a
modified environment without regard to the type of system, funding source, means (organic software
engineering, contractor, Public Private Partnership, etc.), and organizational location and alignment”

§2460. Definition of depot-level maintenance and repair

(a) IN GENERAL.—In this chapter, the term “depot-level maintenance and repair”
means (except as provided in subsection (b)) material maintenance or repair requiring the
overhaul, upgrading, or rebuilding of parts, assemblies, or subassemblies, and the testing
and reclamation of equipment as necessary, regardless of the source of funds for the
maintenance or repair or the location at which the maintenance or repair is performed. The
term includes (1) all aspects of software maintenance classified by the Department of
Defense as of July 1, 1995, sustainment and software engineering (including requirements
definition, architecture, design, development and coding, integration and test, and all other
related software engineering-related activities) for fielded software to correct faults and
vulnerabilities, make continuous capability upgrades, improve performance or other
attributes, or adapt the product to a modified environment without regard to the type of
system, funding source, means (organic software engineering, contractor, Public Private
Partnership, etc.), and organizational location and alignment, as depot-level maintenance
and repair, and (2) interim contractor support or contractor logistics support (or any similar
contractor support), to the extent that such support is for the performance of services
described in the preceding sentence.

(b) EXCEPTIONS.—(1) The term does not include the procurement of major

modifications or upgrades of weapon systems that are designed to improve program
performance or the nuclear refueling or defueling of an aircraft carrier and any concurrent

40

WORKING DOCUMENT//DRAFT

complex overhaul. A major upgrade program covered by this exception could continue to be
performed by private or public sector activities.

(2) The term also does not include the procurement of parts for safety modifications.
However, the term does include the installation of parts for that purpose.

41

WORKING DOCUMENT//DRAFT

Appendix B.7: Requirements Subgroup Report
v0.7, 7 Feb 2019

The Department of Defense (DoD) in 2003 institutionalized the identification and validation of
requirements via the Joint Capability Integration and Development System (JCIDS). Created to
support the statutory responsibility of the Joint Requirements Oversight Council (JROC), it is one
of three processes (Acquisition, Requirements, and Funding) that support the Defense Acquisition
System (DAS). Considered revolutionary in its design, moving DoD from a threat-based to a
capability-based model, it has begun to show its age in today’s era of software-intensive systems
intending to leverage agile software practices. These evolving agile practices upend traditional
industrial-age process attempts to credibly and accurately predict a future 15-20 years away,
necessitating unimaginable precision and foresight upfront in support to capability development.
The requirement process, writ large, must adapt to support delivering capabilities at the speed of
relevance; processes, cultures, and expectations of the Service and Joint Force requirement
communities.

Pain points

A byproduct of top-level requirement flow down is rigidity and over specificity at the derived
requirements level, that greatly hinders agile software design. Capability validated by the JROC
does not proscribe requirement allocation to either hardware or software solutions. However, the
resulting flowdown of derived requirements incorporated into the source selection/contract award
and the subsequent allocation of these between hardware and software by the prime can
ultimately discourage software design flexibility. The decisions, often made years before software
coding even begins, locks the prime and the government into a proscribed path that often does
not produce the desired warfighter capability within the needed time frame. Preserving software
design flexibility must be a key component throughout the requirements validation process.
“Requirers” will need to learn to settle for “less” not “more” at capability need inception.

Too often exquisite requirements, intended to be 100 percent correct, are levied on a system that
in turn drives extensive complex software requirements and design, affecting development,
integration, and system test. Today’s requirements process more closely mimics the “big-bang”
theory often vilified by industry, government, and Congress. As the warfighting community loses
faith in the acquisition community’s ability to meet their commitments through timely incremental
improvements, the temptation to “gold-plate” a requirement becomes more prevalent. Likewise,
as the acquisition community is forced to defend shifting warfighter priorities in budget
deliberations and Congressional engagements, the temptation to “lock requirements down early”
permeates acquisition strategies. With both of these choices in play, exquisite requirements must
be described perfectly at capability inception in order to maintain a low-risk acquisition program -
obviously an impossible outcome.

Data sets are siloed within programs - a common Law of Requirements is that programs of record
(PoR) try to avoid dependencies with other PoRs. By tying SW to a PoR, it becomes nearly
impossible to transfer that code across systems and data environments. Data “lakes,” “pools,”
and “ponds” will be the foundation for future weapon system data repositories, and the
requirements process must be flexible enough to accommodate this new archetype. Breaking

42

WORKING DOCUMENT//DRAFT

from the past mold of tying software code to a program of record and a specific data environment
frees the program manager from the arduous task of integrating seams across multiple PORs.

Desired State. Go from Sailor (Airman, Rifleman, etc.)-stated need to software delivery in their
hands within days to support future conflicts. This necessitates a process for
concept/requirements determination/setting that takes advantage of the agility in software
development and software products to increase the agility and modifiability in our systems.
Requirements flow down must also maintain a broad-based approach into the lowest levels of
design. We also note that one of the overarching agile principles is that “increments are small.”
Fast requirements, fast deployments and fast test cycles for usefulness are tough to accomplish
with huge, monolithic software projects. Start small, stay small! Finally, recognizing that
documenting and contracting for a moving target is not easy but must be done.

Obstacles. Breaking the tyranny of siloed PoRs will require a concerted effort across the
Department, Combat Support Agencies, and will require Congressional engagement and support.
Considerable cultural barriers must also be overcome as the algorithms themselves become
capability, and the methods used to document, validate, and maintain currency enter the
mainstream. Complexity and dependencies among multiple elements prevent widespread usage
of Family-of-Systems (FoS) and System-of-Systems (SoS) requirement documents. Government
requirements and acquisition communities take on extra oversight burden when they take a FoS
or SoS approach because they have to manage all the pieces coming together effectively. Lastly,
current statutory guidance does not promote, encourage, or reward the use of agile software
development practices or environments.

Ideas for Change

● The Joint Staff should consider revising JCIDS guidance to separate functionality that

needs high variability from the functionality that deemed “more stable” (e.g., types of
signals to analyze vs. allowable space for the antenna). Then implement a “software box”
approach for each, one in which the contours of the box are shaped by the functionality
variability

● OSD should consider identifying automated software generation areas that can apply to

specific domains

● The Joint Staff should consider revising JCIDS guidance to document stable concepts, not
speculative ideas.

Example. The Navy operates forward at sea and on-shore at maritime operations centers
(MOCs). Command and control between sea and shore is a key aspect of how they fight – they
need shared battlespace awareness at aligned actions across distributed units at best. However,
the systems afloat and ashore are not always the same because ships need systems that are
hardened for combat at sea. If a new algorithm can help manage supply and logistics on the cloud
ashore, it may not run the same at sea because different system exists afloat. Extrapolating across
Services, the USAF writes an algorithm to optimize F-16 maintenance, however it is highly unlikely
that the Navy can pick it up and apply it to F-18s. This depends on the vertical integration of the
algorithm, data, and system (PoR).

43

WORKING DOCUMENT//DRAFT

o Specifying needed capabilities is important up front, however it must be
acknowledged that initial software requirements need to be “just barely good
enough” for the situation at hand or, in other words, “document late”

o Acknowledge that software requirement documents will iterate, iterate, iterate.

JCIDS must change from a “one-pass” mentality to a “first of many” model that is
inherently agile delegating approval to the lowest possible level

● The DoD should consider instituting a distributed model-based approach to requirements

development extended across the enterprise

o The model should be used to develop result-based metrics for requirement
evaluation

● The Joint Staff should consider revising JCIDS guidance to focus on user needs,

bypassing the JCIDS process as needed to facilitate rapid software development.
Guidance should specifically account for user communities (e.g. Tactical Action Officer
(TAO), Maritime Operations Center (MOC) director) that do not have one specific PoR
assigned to them, but use multiple systems and data from those systems to be effective

● OSD and the Joint Staff should consider creating “umbrella” software programs around

“roles” (e.g. USAF Kessel Run)

Potential DRAFT Legislative/Regulatory Language

No recommendations at this time.

44

WORKING DOCUMENT//DRAFT

45

WORKING DOCUMENT//DRAFT

Appendix B.8: Security Accreditation/Certification Subgroup Report
v0.1, 28 Jan 2019

The Department’s current Security Certification and Accreditation (C&A) process is a complicated
and time-consuming process that is measured in months and years. The process is typically seen
as a serial process that occurs after development with a checklist mentality. While this fits with a
waterfall approach to development, the Department is changing to an agile, DevSecOps approach.
The overall security paradigm must change from one where updates to software happen
optimistically on a yearly basis to one where software is updated weekly or daily in response to
emerging threats and this is recognized as more secure than the slow, static process. Additionally,
we must strive to accredit the process, tools, and platforms to allow and enable continuous authority
to operate (ATO) when software changes meet the required thresholds.

Pain points

Complex, time-consuming, and misapplied process. Although developing and operating software
securely is a primary concern, the means to achieve and demonstrate security is overly complex
and hampered by inconsistent and outdated/misapplied policy and implementation practices (e.g.
overlaying historical DoD Information Assurance Certification and Accreditation Process (DIACAP)
process over Risk Management Framework (RMF) controls for individual pieces of software versus
system accreditation). The sense is that the Certification and Accreditation (C&A) process is
primarily a “check-the-box” documentary process, adds little value to the overall security of the
system, and is likely to overlook flaws in the design, implementation, and the environment in which
the software operates.

No way to calculate total costs of C&A process. The Department needs to be able to calculate the
true and component costs for implementing the RMF and C&A in order to identify inefficiencies,
duplicative capabilities, and redundant or overlapping security products and services that are being
acquired or developed. Absent a set of metrics it is difficult to prioritize risk areas, investments, and
evaluating risk reduction and return on investment.

Lack of top-down security requirements. The Department has not decomposed security
requirements from an enterprise level to a mission level to a functional implementation level.
Programs waste resources implementing security controls that should be inherited.

Lack of automation. The C&A process is predominantly a manual process which makes it a very
low process. Programs must plan in terms of months and years to get a product through the security
accreditation process. This slow process does not provide the warfighter the timely, modern
solutions that are needed.

46

WORKING DOCUMENT//DRAFT

Desired state

Accredit the process, not the product. Done correctly, security is applied from the beginning of
software development using automated tools. Before transitioning into operations, an Authorizing
Official (AO) reviews the process under which the software was developed and accepts the risk as
determined from various scans and tests. The AO signs a Continuous Authority to Operate (ATO)
so that as long as the process remains intact and is continuously operationally monitored, the
subsequent software releases are accredited.

Obstacles

Two primary obstacles are culture change and workforce skills. The current security culture is that
security is a checkbox activity at the end of the development process. As RMF is implemented, this
is beginning to change the culture of security from compliance to continuous risk assessment.
However, the process is still very manual. The culture change needs to include using automation
to speed up risk assessment and continuous risk monitoring of operational software.

The other obstacle is the security and accreditation workforce skill set. While tools can provide
reports and speed up security activities like scans and code analysis, it takes a particular skill set to
understand those inputs and recommend or make a risk decisions. The current security workforce
must be trained in these new skills.

Ideas for change

Embrace DevSecOps. The Department should embrace DevSecOps (not just DevOps) and provide
the necessary resources to develop the common software components and automation to assemble,
test, accredit, and operate software systems. DevSecOps also includes policy-supported processes,
certified libraries, tools, and an operational platform (with appropriately instrumented run-time
software), and a toolchain reference to implementation to produce “born secure” software.

Automate, Automate, Automate! The Department needs to provide automated tools and services
needed to integrate continuous monitoring with the development lifecycle, enable continuous
assessment and accreditation, and delegate decision making at the lowest level possible. Examples
of automation are using static code analysis during the “build” stage, running automated unit tests,
functional test, regression tests, integration tests, and resiliency/performance tests during the “test”
stage, using dynamic code analysis, fuzzing scans, running container security scans, STIG
compliance scans, and 508 compliance scans during the “secure” stage, and running continuous
monitoring tools and ensuring logs are being pushed to the appropriate entity during the “monitoring”
and “operational” stages.

Define top-down implementation requirements. The Department needs to ensure that each Joint
Capability Area (JCA) flows-down its strategy, best practices, and implementation
requirements/guidance for security and accreditation to allow the Component responsible for
implementing the software to appropriately tailor RMF and plan the development, accreditation, and
operation of the software. Furthermore, each JCA should endeavor to clearly state its risk profile
and tolerance so that the RMF can be applied effectively and appropriately mitigate identified risks.

47

WORKING DOCUMENT//DRAFT

Education is necessary at all levels. As security is “baked in” to software during the development
process, people must be educated about what that means as different tools look at different security
aspects. They must also be educated in what it means to bring different security reports together
and make a risk decision, both during development, and continuously during operations.

Culturally, people must learn to appreciate that speed helps increase security. Security is improved
when changes and updates can be made quickly to an application. Using automation, software can
be reviewed and updated quickly. The AO must also be able to review documentation and make a
risk decision quickly and make that decision on the process and not the product and document it in
a “Continuous Authority to Operate.”

48

WORKING DOCUMENT//DRAFT

49

WORKING DOCUMENT//DRAFT

Appendix B.9: Test and Evaluation Subgroup Report
v0.3, 11 Feb 2019

The fundamental purpose of DoD test and evaluation (T&E) is to provide knowledge that helps
decision makers manage the risk involved in developing, producing, operating, and sustaining
systems and capabilities. While colloquially referred to as a single construct, T&E is composed of
two distinct functions: obtaining the data and assessing the data. This distinction is important
because the T&E community will report “pain points” in both functions. There are also two major
types of test: Developmental Test (DT) and Operational Test (OT). DT, by nature, is “experimental,”
performed on behalf of the Program Management Office (PMO), supporting a formative evaluation
and identifying design elements that will drive mission critical capability to inform the evolution of
component and system design. OT is “evaluative,” performed by and on behalf of the warfighter,
supporting a summative evaluation of system capabilities to support warfighting missions across the
operational envelope.

Because T&E has historically occurred toward the end of, often, a long and costly acquisition process
(e.g., requirements, design, development, etc.), it can be perceived as simply adding time and cost
to an already late and over-budget effort; PMOs therefore can view this “last step” T&E as simply
making the situation worse. And if T&E finds a system substantially defective, necessitating
expensive re-engineering of the design late in developing, it adds to the perception that T&E simply
adds cost and time to project execution. A continuous iterative T&E model is clearly called for,
occurring alongside design and development, where T&E can both; catch defects early so they can
be solved quickly and cheaply and inform/shape system requirements based on early feedback from
the warfighter. Experience shows that active, early involvement by independent testers – combined
with a PMO who responds to the independent testers’ advice – makes a positive difference to
program outcomes. We have seen this in modern iterative approaches, such as agile development,
applied effectively in the DoD, especially in Major Automated Information Systems (MAIS).6 Taken
together, these observations point to the need to move away from what can be a linear waterfall
process segregated by siloes, to a more iterative and collaborative model that fuses all development,
test, processes, tools, and information to enable the continuous delivery of tested capability. T&E
can then be viewed as saving time/cost in development, instead of adding time/cost.

Pain Points and Obstacles

The DoD lacks the enterprise digital infrastructure needed to test the broad spectrum of software
types and across the span of T&E to support developmental efficiency (in DT) and operational
effectiveness (in OT). Digital models of test articles (e.g., “Digital Twins”) are not always available
and not built to common standards. T&E environments, including threat surrogates or models, are
often program-focused and funded, with short-term development goals and narrowly-scoped
capabilities defined by the program. Building (and re-building) representative T&E environments is
time and cost prohibitive for individual programs and results in duplicative infrastructure investments
across DoD. Moreover, current T&E practices in the Services, including those focused on software-
intensive systems, do not adequately test systems in Joint and Coalition environments, nor do they
consistently use appropriate risk-based, mission-focused testing.

6 FY16 DOT&E Annual Report.

50

WORKING DOCUMENT//DRAFT

The DoD lacks the enterprise data management and analytics capability needed to support the
evaluation of test data in accordance with the pace of modern iterative software methods. As data
required to make informed acquisition decisions continues to grow due to higher resolution
measurements, higher acquisition rates, and other additional requirements for software intensive
systems (e.g., interdependency, need to operate in system-of-systems, family-of-systems, Joint, and
Coalition environments, etc.), the need for a T&E infrastructure to collect, aggregate, and analyze
this data must likewise evolve to keep pace. More timely data fusion will require improvements in
data management techniques, access speeds, data access policies, data verification techniques,
and the availability of more intelligent and agile tools. Without this infrastructure, and within the
current paradigm, we are failing to adequately gather and analyze these highly diverse and complex
datasets, which leads to invalid assessments of acquisition program progress and system
performance, undercuts mission readiness, and places warfighters at risk. This gap becomes an
even more prominent choke point in an iterative cycle. Thus, even if we mitigate the first pain point
with modernized realistic test environments, and had the capability to collect the appropriate
mix/quantity of data in testing, we would still not have the analytics horsepower to turn around an
assessment to support the pace of an Agile/DevSecOps iterative cycle.

The DoD lacks the resources needed to adequately emulate advanced cyber adversaries, to support
fielding of trusted, survivable, and resilient software-intensive defense systems. Various oversight
entities (e.g., NDAAs, GAO Reports, etc.) have acknowledged this gap, and past DOT&E Annual
Reports have documented a significant number of adverse cyber findings in OT that should not
require an operational environment to discover. While the gap exists now (in the absence of modern
software methods), it will become an even more prominent choke point in a rapid development and
operational fielding paradigm. We do not have the advanced cyber test resources (manpower,
methods, and environment) to support a true Agile/DevSecOps approach to developing, testing, and
fielding the broad range of software-intensive systems needed by DoD now and in the future, in an
environment increasingly populated by advanced cyber adversaries.

The DoD lacks a modern software intellectual property (IP) strategy to support T&E in a rapid
software development and fielding environment. Overcoming this pain point is critical to overcoming
all of the three previously described pain points. Specifically, none of the previously described pain
points is fully achievable without sufficient access to necessary technical data associated with the
software deliverables. Software acquisition processes are and will continue to be suboptimal (with
respect to time and risk) without access to relevant technical data and this gap will become an even
more prominent choke point in an Agile/DevSecOps-based paradigm without that access. A modern
software IP strategy must include access to software environments (e.g., source code, build tools,
test scripts, cybersecurity artifacts/risk assessments, etc.) so tests are repeatable, extendable, and
reusable. This strategy will also have to strike a balance with the IP rights of the innovator (usually
industry) to ensure continued engagement of DoD with leading-edge technology organizations.

A modern software IP strategy would support the three previously described pain points via:
● Enhance our ability to operationalize the concept of “digital twins,” with sufficient access to

the source code of a given system (balancing DoD and innovator IP rights), so as to be
able adequately represent that system.

● Support the instrumentation of software-intensive systems as needed during testing.
● Support cyber vulnerability assessments and the assignment of risks to residual

vulnerabilities, via access to system data (e.g., code, technical data, etc.).

Desired state

51

WORKING DOCUMENT//DRAFT

While the DOD does a fair amount of “integrated testing” now (across DT and OT), that is not the
same as “integrating T&E with the Voice of the End User continuously and alongside software
development.” T&E must strive for continuous software testing, automated and integrated into the
development cycle to the fullest extent possible, across the entirety of the DoD’s software portfolio.
The qualifier, “fullest extent possible” is important, as many experts have acknowledged that no
single “one size fits all” approach will work best across the entire DoD software portfolio all of the
time.7,8 In this envisioned state, independent testers would work alongside developers and operators
to help software development programs succeed and deliver capability at the speed of need. T&E
would no longer be perceived as “slowing things down” or “costing money post-development”
because it occurs toward the end of a highly linear and inefficient process, but would instead be
associated with saving time and money during development. This vision, applied across the entire
DoD software portfolio (i.e., beyond just IT or MAIS) requires the right kinds of tools, architectures
and standards (see first three pain points), access to the right kind of data (see second and fourth
pain points), and an ability to partner with and work alongside the developer, while yet maintaining
independence and objectivity in our assessments.

Ideas for change

Build the enterprise-level digital infrastructure needed to streamline software development and
testing across the full DoD software portfolio. Beyond the DevSecOps platform (or Digital
Technology concept), the DoD requires a digital engineering infrastructure to streamline integration
and testing. This suggests that the DevSecOps platform must be made available to all DoD software
developers and:

● Integrated with (systems-level) model-based/digital engineering infrastructure, including
digital twin(s),

● Integrated with existing T&E infrastructure (e.g., open-air ranges, labs, and other test
facilities),

● Integrated with comprehensive tactical/mission-level infrastructure, and
● Available to others who could benefit (e.g., analysis, training, planning, etc.).

Even with this kind of complete testing infrastructure providing the capability to collect the
appropriate mix/quantity of data in testing, we would still not have the analytics horsepower to turn
around an assessment sufficiently rapidly to support the pace of an Agile/DevSecOps iterative cycle.
We must develop the enterprise knowledge management and data analytics capability for rapid
analysis/presentation of technical data to support deployment decisions at each iterative cycle.

Finally, to advance our cyber test resources such that we can achieve overmatch to our most capable
adversaries while yet supporting the pace of the modern software development, the DoD should
expand DOT&E’s current capability to obtain state-of-the-art cyber capabilities on a fee- for-service
basis. This provides a straightforward way to acquire skilled cyber personnel from leading institutions
(e.g., academia, university affiliated or federally funded research and development centers, etc.), to
help the DoD to keep pace with advanced cyber adversaries.

7 2018 Defense Science Board Task Force on Design and Acquisition of Software for Defense Systems.

8 Boehm and Turner, 2009. Balancing Agility and Discipline: A Guide for the Perplexed. Addison-Wesley.
Boston, MA.

52

WORKING DOCUMENT//DRAFT

53

WORKING DOCUMENT//DRAFT

Appendix B.10: Workforce Subgroup Report
V0.3, 7 Feb 2019

DoD’s workforce (civilian, military, and supporting contractor personnel) is our most valuable
resource. The workforce’s capacity to apply modern technology and software practices to meet the
mission is the only way we can remain relevant in increasingly technical fighting domains, especially
against our sophisticated peers, Russia and China.

Improved management of the Department’s software acquisition talent will also drive success across
the other subgroups and sections of this report. Policies, processes, and bureaucratic practices are
never a sufficient substitute for competence.

The Department’s challenges are well documented and well known by the software acquisition and
engineering professionals who suffer most from the accrued technology, cultural, and leadership
debt. The Workforce Subgroup identified prevalent pain points, but focused on providing concrete
and actionable solutions for improving the recruitment, retention, development, and engagement of
the workforce.

Pain Points

The Department’s reputation as an employer is a weakness rather than a strength. Candidates
base their employment decision on a variety of factors, but the organization’s reputation and day-to-
day work are chief among their considerations. The demand, and competition with the private sector,
for an experienced and qualified workforce, is increasing as threats to our data security become
more sophisticated. DoD has a reputation as an antiquated employer that rewards time in grade
rather than competence and most often outsources its technical execution. Technical employees
often serve as oversight or move away from “hands-on-keyboard” as they advance in their careers;
no longer contributing to creative or innovative execution.

The Department does not adequately understand which competencies and skill sets are possessed
and needed within its software acquisition and engineering workforce. Without the ability to
distinguish the workforce, the DoD cannot effectively drive human capital initiatives. Furthermore,
there is no enterprise-wide talent management system to manage the workforce (e.g.,
geographically, skills, etc.), which leads to bureaucratic silos and the inability to leverage the Total
Force.

The Department has not prioritized a comprehensive recruiting strategy or campaign targeting
civilians (90 percent of the acquisition workforce) for technical positions. When candidates do apply,
they face an “overly complex and lengthy hiring process (that) frequently results in the Government
losing potential employees to private sector organizations with more streamlined hiring processes,”
according to the President’s Management Agenda.9

There is no comprehensive training or development program that prepares the software acquisition
and technical workforce to adequately deploy modern development tools and methodologies within
our dynamic environments. Hiring top technical talent into the Department will never be a silver

9 “President's Management Agenda: Modernizing Government for the 21st Century,” (Washington, DC: Office of Management and
Budget, April 2018), 20, https://www.whitehouse.gov/omb/management/pma/.

https://www.whitehouse.gov/omb/management/pma/

54

WORKING DOCUMENT//DRAFT

bullet. The Department also needs to consider how to equip, reward, promote, and empower its
existing workforce.

The Department is unable to leverage modern tools that are common in the private sector and our
personal lives (e.g., cloud storage, collaborative software, etc.) due to bureaucratic barriers. Top
talent expects access to these tools to meet mission demands, and their absence may discourage
qualified candidates from applying or staying. Although the Department has pockets of innovation
and entrepreneurship within rapid fielding offices across the services, this culture has not scaled to
the larger acquisition programs and offices. Long-cycle times, bureaucratic silos, and information-
hoarding prevail.

Desired State

The Department requires a workforce capable of acquiring, building, and delivering software and
technology in real time, as threats and demands emerge. This workforce should resemble
successful technology companies that must move quickly to meet market challenges. They do so
by promoting an agile culture, celebrating innovation, learning from calculated failures, and valuing
people over process.

The Department’s workforce embraced commercial best practices for the rapid recruitment of
talented professionals. Once on boarded quickly, they will use modern tools and continuously learn
in state-of-the-art training environments, bringing in the best from industry and academia, while
pursuing private-public exchange programs to broaden their skill sets.

Obstacles

The bureaucratic culture of the Department creates significant barriers compared to a commercial
sector ecosystem that moves at the speed of relevance. These barriers are now ingrained within the
institution, perpetuating a risk-averse environment that represents the most significant obstacle to
reform. While there are minor legislative solutions to achieving the desired state, we believe that the
Department has the necessary authorities and flexibilities, but has shown lack of impetus to move
to the modern era of talent management.

While small pockets of expertise and progress exist, the Department as a whole lacks sufficient
understanding of current software development practices and talent management models that
support them. Studies on the workforce dating back 35 years that show “limited evidence these
different efforts had any lasting impact or resulted in meaningful outcomes.”10

Ideas for Change

Foundational. Taking into account history and the significant challenges with changing the culture
in a bureaucracy, the Department should empower a small cadre of Highly Qualified Experts and
innovative Department employees to execute changes from this report. This cadre is empowered
with the authority to create, eliminate, and change policies within the Department for organizations
beyond themselves. If needed, create a software acquisition workforce fund similar to the existing

10 McLendon, Michael H.; Shull, Forrest; Miller, Christopher, “DoD's Software Sustainment Ecosystem: Needed Skill Sets,” (Naval
Postgraduate School, Monterey, California, April 30, 2018).

55

WORKING DOCUMENT//DRAFT

Defense Acquisition Workforce Development Fund (DAWDF). As called out by the Defense Science
Board, the purpose of this fund will be to hire and train a cadre of modern software acquisition
experts. This fund should also be used to provide Agile, Tech, and DevSecOps coaches in Program
Offices to support transformations, adoption of modern software practice and sharing lessons across
the enterprise.11

Workforce Foundations. The Department must develop a core occupational series based on current
core competencies and skills for software acquisition and engineering. This occupational series
should encompass all workforce roles required for modern software development and acquisition -
engineers, designers, product managers, etc. Additionally, the Department should create a unique
identifier or endorsement of qualified (experience & training) individuals who are capable of serving
on an acquisition for software. This includes the development of a modern talent marketplace (and
associated knowledge and skill tags/badges) to track these individuals. The competencies for this
series should be flexible enough to evolve alongside technology, something that has constrained
the 2110 IT Series.

Contractor Reforms. Defense contractors develop the majority of software in the Department. The
Department should incentivize defense contractors that demonstrate modern software
methodologies; this may take the form of software factory demonstrations and rapid software
delivery challenges when evaluating proposals. Additional consideration should be given to
contractors with demonstrated excellence creating commercially successful software.

Recruitment and Hiring. The Department must overhaul its recruiting and hiring process to use
simple position titles and descriptions, educate hiring managers to leverage all hiring authorities,
engage subject-matter experts as reviewers, and streamline the onboarding process to take weeks
instead of months. The Department needs to embrace private-sector hiring methods to attract and
onboard top talent from non-traditional backgrounds (e.g., hackers and entrepreneurs). Too often,
these types of candidates are passed over or require special authorities to join the Department, due
to lack of education or regular pay stubs. Furthermore, the Department must develop a strategic
recruitment program that targets civilians, similar to its recruitment strategy for military members.
This includes prioritizing experience and skills over cookie-cutter commercial certifications or
educational credentials.

Development, Advancement, Engagement, and Retention. The Department must pilot development
programs that provide comprehensive training for all software acquisition professionals, developers,
and associated functions. Programs should be built in partnership with academia and industry,
leveraging commercial training solutions rather than custom and expensive Federal solutions. This
will include continuing education courses to help the workforce stay current and ensure technical
literacy across the acquisition workforce. The Department must emphasize promoting and rewarding
those that have proven both commitment and technical competence. Continually looking outside
the Department is demoralizing and insulting to existing professionals that demonstrate innovation,
excellence, and the ability to deliver already. The Department should incentivize and provide
software practitioners access to modern engagement and collaboration platforms to connect, share
their skills and knowledge, and develop solutions leveraging the full enterprise.

11 Design and Acquisition of Software for Defense Systems,” Defense Science Board, Feb. 2018,
https://www.acq.osd.mil/dsb/reports.htm

http://www.acq.osd.mil/dsb/reports.htm
http://www.acq.osd.mil/dsb/reports.htm

56

WORKING DOCUMENT//DRAFT

Finally, the Department should encourage greater private-public sector fluidity within its workforce.
Federal employees who come from the private sector bring with them best practices, modern
methodologies, and exposure to new technologies. Federal employees who leave bring their
understanding of our unique mission and constraints, helping the private sector develop offerings
and services that meet our needs.

Proposed Legislative/Regulatory Language

1. Establishment of a Core “Digital Delivery” Occupational Series. Modifying Existing

Language - Title 10, §1721. Need to add this Core Occupational Series to the list of
“Designation of Acquisition Positions” or Consider Using Existing Language: Title 10, §1607
to add this occupational series fit within this established Defense Intelligence Senior Level
model.

2. Empower Implementation Cadre. New Legislation - This will be critical to avoid a repeat of

the past 35+ years of continuous admiration of the problem.

3. Contractor Reform. Adjust future NDAA’s to add incentives for defense contractors to use
modern development practices. (See FY18NDAA / §§873 & 874)

4. Modernize Position Description and Hiring Practices. Modifying Existing Language - Title

5, Part III, Subpart D, Chapter 53, the addition of this pilot program needs to be added.

5. Develop a Modern Academy. Modification Language - Title 10 §1746: This section should
be added under the Defense Acquisition University, however, the HQE Cadre from Proposal
#1 will lead the development of this pilot training program. Note: Tied with FY18 NDAA §891

6. Private-Public Sector Fluidity. Modification Language - Title 5, §§3371-3375: Expand the

Inter-Government Personnel Act and allow more civil service employees to work with non-
Federal Agencies and Educational Institutions. Modification Language - Title 10, §1599g:
Expand the Public-Private Talent Exchange Program and modify the language to reduce the
“repayment” period from 1:2 to 1:1 ratio.

7. Computer Language Proficiency Pay. New Language - Title 10, §1596a - Use this

language to create a new Computer-language proficiency pay statute.

8. Develop a Strategic Recruitment Strategy for Civilians. New Legislation

9. Pilot a Cyber Hiring Team. New Legislation - Team will have all the necessary authorities
to execute recommendations called out in this report. The team will serve as a Department-
wide alternative to organization’s traditional HR offices and will provide expedited hiring and
a better candidate experience for top tier cyber positions.

57

WORKING DOCUMENT//DRAFT

10. Establish Workforce Fund. New Legislation - Similar to DAWDF, but the primary use will
be for hiring and training a cadre of modern software acquisition experts.

58

WORKING DOCUMENT//DRAFT

59

WORKING DOCUMENT//DRAFT

Appendix C: Analysis the Old Fashioned Way:
A Look at Past DoD Software Projects

v1.0, 6 Jan 2019

The Department has been building and buying software for decades. The study’s initial idea was
to take a cutting edge machine learning tool, hook it up to the Department’s databases, and do
an analysis across all of the plentiful software data collected over the years.

Unfortunately, initial attempts at analysis quickly led to the realization that the Department had
never strategically collected data on its software. The data that have been collected cover only a
subset of the systems the Department acquires and are typically collected by hand, with all the
potential for erroneous or missing values that that implies. The granularity at which data are
collected also does not typically support insight into specific questions of acquisition performance.
Without massive data calls, enormous amounts of PDF scanning, and an impossible number of
non-disclosure agreements, a comprehensive analysis would not be possible.

Instead, the SWAP members broke the analysis into two main efforts:

1. Analysis of the available data in order to test the board’s hypotheses as they evolve.
Subject Matter Experts who are familiar with the existing data and its constraints explored
the available data in search of insights that would confirm or refute the board’s hypotheses
about DoD software acquisition performance. These results are described in this
appendix.

2. Application of cutting edge machine learning and other modern analytical techniques to
datasets from outside of the DoD, to support reasoning about the type of insights that
could be gained and reported, if the Department had access to more comprehensive data
about its software. These results are described in Appendix D.

C.1 Data Used in This Analysis

The focus of this study is on software-intensive programs – and the specific software scope within
these programs – presenting top-level insights into software acquisition performance. We focused
our analysis on a few major data sources collected by the Department, which can provide insight
on these issues.

The data in our first source are known as Software Resources Data Reports (SRDRs). The SRDR
data were selected for use because they are specifically focused on the software activities of DoD
acquisition programs. The SRDR is a contract data deliverable that formalizes the reporting of
software metrics data and is the primary source of data on software projects and their
performance. The SRDR reports are provided at the project level or subsystem level, not at the
DoD Acquisition Program level. The data points included in the analyses reported here are
representative of software builds, increments, or releases. In many cases, there are multiple data
points in the set that represent different subsystems or projects from the same program.

60

WORKING DOCUMENT//DRAFT

The SRDR applies to all major contracts and subcontracts, regardless of contract type, for
contractors developing or producing software elements that meet specific criteria12 and with a
projected software effort greater than $20M.

SRDR reports are designed to record both the estimates and actual results of new software
development efforts or upgrades, with the goal of supporting cost estimation. The reports collect
many characteristics about software activities in both structured and unstructured formats. The
primary data analyzed in our work were size, effort, and schedule. Notably absent from the
SRDRs are any data about quality. Defect data have been optional until recently and hence were
not reported.

Other data sources used to explore some of the assumptions and recommendations of the DIB
are the IPMR (Integrated Program Management Report) and SAR (Selected Acquisition Report)
datasets. Programs in these datasets fall into the category of Major Defense Acquisition Programs
(MDAPs). These datasets include:

1. Software development effort measured in labor hours, software size, and development
activity duration metrics delivered as mandated respective to contractual agreements.

2. Software development performance as identified within each contract report. However,
each contract contained common elements supporting both software and non-software
activity on contracts. These were treated in proportion to the weight of software activity
cost on contract. These reports contain data for measuring contractor’s cost compared to
budget baselines on Department acquisition contracts as well as projections of cost at
completion.

3. Planned and executed schedule milestone dates reported to the Department at the
aggregate program level as required by acquisition policy. This information is included as
a part of a comprehensive summary of total program cost, schedule, and unit cost breach
information.

These software development effort metrics, contract performance, and program level schedule
data represent the best source of product development, contract cost, and schedule performance
information available on various projects throughout DoD. In addition, these datasets are also
independently validated by agencies within the Department and subject to audits that require
maximum fidelity to accounting standards.

It is worth noting that these datasets provide the best available information on DoD software
acquisition, but are mainly limited to contract cost and budget performance (versus technical
functionality performance) and were collected by hand. This scenario seems to address larger
structural and cultural problems:

● The Department has no real acquisition data system that holds anything more than top-
level data on our largest programs.

12 Specifically, “within acquisition category (ACAT) I and IA programs and pre-MDAP and pre-MAIS
programs, subsequent to milestone A approval.”

61

WORKING DOCUMENT//DRAFT

● There is no automated collection of acquisition data, despite the fact that software tools
and infrastructures, from which data can be automatically extracted, are integral parts of
the state of the practice in the software industry.

● For much of the limited software-specific data that we do have (for example, source lines
of code, or SLOC), this study has argued that they do not provide meaningful technical
insight. Metrics like SLOC are not what the private sector would use to assess and manage
programs.

● Leadership often relies on experience and trusted advisors because timely, authoritative
data are not available for real analysis.

C.2 Software Development Project Analysis

One area of analysis focused on the SRDR data to describe, at an enterprise- or portfolio-level,
what the Department is able to say about its software based on the software-specific data. As
described above, SRDR data are more project- or subcomponent-focused versus program- or
contract-focused; indeed, it is not easy and perhaps not possible to create a program-level
understanding of software activities from the SRDR data.

The results reported here address 3 three questions:

1. How well do software projects perform in terms of effort and schedule?

2. Is there a difference in project performance related to the size of the project and the use
of agile development?

3. How long do software projects take to reach completion?

The source of the data was the May 2018 compilation file published by members of the Software
Resources Data Report Working Group. This file contains 3993 submissions that yielded 475
initial reports of planning estimates, 598 reports of final actual values, and 295 pairs of initial and
final reports. Upon further investigation, 131 pairs contained full lifecycle information and therefore
serve as a better dataset for studying effort and schedule growth. Thus, while we base our
conclusions in this section on the best available data for software, it is important to keep in mind
the data represent only a small subset of the Department’s software.

The results presented below were primarily based on common statistical methods. Although a
variety of additional explorations were conducted, the results were not found to be stable or to
have achieved high confidence. These included dynamic simulation modeling, causal learning,
and analysis with repetitive partitioning and regression trees.

Software Project Effort and Schedule Performance

In the current DoD acquisition lifecycle, substantial effort goes into defining requirements upfront
in extensive detail, and projecting the cost and schedule for achieving the capabilities so
described. Despite that, it is often said that the Department has problems acquiring the software
capabilities it needs within budget and schedule. This analysis explored whether there was
support for this conventional wisdom.

62

WORKING DOCUMENT//DRAFT

DoD projects in the dataset generally do indeed experience substantial effort growth. As seen in
the following figure, the median number of estimated hours is 22,250 while the median number of
actual hours is 30,120. (Note that the vast majority of points lie above the green line, indicating
that actual values were greater than estimated.) The median rate of growth is 25%. However,
there are some projects that expend less than their estimated effort, sometimes by a substantial
amount as reflected by the points within the red circle. Unfortunately, based on the data reported
we cannot discern whether they delivered the full committed functionality or not.

Figure 1. Estimated and actual project hours for project with less than 300,000 estimated hours.

The growth in project duration is generally not as large as the growth in effort. The median
planned duration is 28 months and the actual duration is 34.9 months. The median growth in
duration is 12%.

63

WORKING DOCUMENT//DRAFT

Figure 2. Estimated and actual project duration.

Interestingly, effort and duration growth are only weakly correlated and the highly skewed nature
of their distributions means that averages create a more negative impression of performance than
may be warranted. That is, the average exaggerates the degree of growth across the portfolio of
projects. Nonetheless, in the data we have available, overruns of effort and duration are the norm.

Does Project Size Affect Performance?

The DIB has recommended that software programs should start small. The next analysis
examined the historical data available to test whether small programs performed better than large
ones, at least in terms of delivering capabilities on time and within budget.

To perform this analysis, projects were categorized in terms of their estimated equivalent source
lines of code (ESLOC)13 and effort. ESLOC is not collected but computed from the detailed SLOC
measures that are collected: ESLOC combines the different sources of lines of code, new,
modified, reused, and autogenerated, into a single count. Projects that were in the lower and
upper quartiles on both effort and ESLOC measures were labelled as small and large projects
respectively. This yielded 53 small and 55 large projects. An analysis of variance was conducted
for growth in effort and duration.

The results found that small projects do not outperform large projects. Large projects do have
less effort growth on a percentage basis but more growth in terms of raw hours. Surprisingly,
schedule growth is very similar. Variation in performance overwhelms any apparent difference
and the results do not achieve statistical significance.

13 Elsewhere in this report, we reflect on the problems inherent with using SLOC as a measure. However,
this is a key measure that has been collected historically by the department and so represents the best
available data for this analysis.

64

WORKING DOCUMENT//DRAFT

Figure 3. Effort growth by project size.

Figure 4. Duration growth by project size.

The fact that small projects still experience the same growth as large projects does not negate
the advice that projects should start small, iterate often, and be terminated early if unsuccessful,
since this can still result in significant savings in costs for projects that are not performing well.

Do Development Approaches Affect Performance?

There is much interest in the software development community and the DoD in the use of Agile
methods. While the most recently updated SRDR form explicitly calls out measures for Agile
projects, this has not been the case for the historical SRDR data upon which these analyses rely.
Furthermore, the identification of the development approach is captured in an open text field. This
necessitated interpretation and grouping of the entries in order to perform this analysis. A
significant number of projects reported using “Waterfall,” “Incremental,” “Spiral,” or “Iterative”
approaches. The remainder suggest use of a customized or hybrid approach. For the analysis
here, “Waterfall” is compared to “Incremental,” “Spiral,” and “Iterative” projects.

65

WORKING DOCUMENT//DRAFT

Again, using ANOVA, the results indicate that effort growth does not significantly vary by
development approach. However, duration growth is significantly less for projects using
incremental development approaches as compared to waterfall (28% v 70% on average).

Figure 5. Effort and duration growth by development approach.

How Long Does It Currently Take to Complete a Project/Deliver Software?

As can be seen in the following figure, it is very rare for a project to complete in 12 months or
less. Out of 371 projects used for this analysis, only 21 (6%) completed in this timeframe.

Figure 6. Actual duration for 371 AIS, Engineering, and Real-time projects.

66

WORKING DOCUMENT//DRAFT

Additional Insights from the SRDR Data

The preceding analyses were guided by the recommendations and proposed measures in DIB
authored documents. In the course of performing those analyses, other questions and issues
were posed and investigated. Briefly, these findings are:

1. Extreme variability in project performance confounds the identification of statistically
significant results. This was noted above and is most likely actually due to performance
and reporting inconsistencies.

2. Planned values can be useful for establishing expectations regarding reported actual effort
and duration. That is, planned and actual values tend to be highly correlated with each
other.

3. Planning for reuse is associated with significantly more schedule growth as compared to
projects that do not plan for reuse.

The last one deserves more explanation as it is a somewhat counterintuitive result. Based on
275 projects that reported either no plan for code reuse or did plan for code reuse, the growth
analysis showed no statistically significant differences in effort growth, but a significant difference
in the amount of duration growth. Projects planning for code reuse had 52% duration growth as
compared to only 20% for those that did not plan for code reuse. This phenomenon has been
noted before and attributed to over-optimism about the amount and ease of code reuse. As the
ability to reuse code falls short, unplanned effort and time go into producing new or modified code
to compensate for the unrealized code reuse. Why effort growth is not significantly different is
but likely at least partially related to the extreme variability in the performance measures.

Recommendations for Improving SRDR Data for Use

Issues regarding the data quality of SRDR data used here hampered the analyses. As is noted
earlier, there is a substantial reduction from the number of submissions in the system to the
number of usable records. At its most extreme there are 131 high quality pairs (262 records) out
of the 3993 submissions included in the compilation dataset. That is, roughly 93% of the data is
discarded.

The following recommendations are offered for improving SRDR data for use in addition to
supporting the needs of the DOD cost community. Briefly, they are:

1. Leverage data collection and reporting from automation within the software environments
(software factory). Minimize the need for manual entry and transformation.

2. Capture information about the quality of the delivered system.

3. Make the data more broadly available and encourage analyses into DoD software
challenges (DIB Recommendation A6).

4. Identify the information needs of the stakeholders and intended users of the data beyond
the cost community.

67

WORKING DOCUMENT//DRAFT

C.3 Software Development Data Analyses

A second investigation focused on cost and schedule performance data reported on recently
completed and ongoing software development efforts within DoD. As these data provided insights
within programs (and allowed understanding how values changed over time), we expected that
this analysis would allow for deeper dives that could better explain how software acquisition
occurs in programs.

This information was extracted from IPMRs, which are deliverables required by most contracts.
The team also reviewed SARs for the large ACAT I programs to gain perspective on programs as
they evolve over time.

Poor Data Quality and Inconsistent Data Reporting

There are approximately 130 ACAT I programs reporting research and development (R&D)
contract performance over the past 10 years. We discarded from our analysis:

● Contracts for which the first IPMR report showed 65% (or about two-thirds) completed in
work scope, reasoning that too much of the work had occurred before data collection
began;

● Contracts for which the latest IPMR reported work that was less than 70% complete,
reasoning that we would not have the ability to evaluate a significant portion of work
completed.

146 contracts (35%) did not meet these data quality criteria out of the total of the 413 ACAT I
program development contracts for which we have data (Figure 7). The fact that more than one-
third of contracts do not meet this criterion implies that DoD would benefit from improving the
quality and consistency of software development performance reporting. DoD cannot
comprehensively assess the performance and value of the billions of dollars in investment without
insight into a third of the complete portfolio.

Additionally, there are many data that are of limited utility due inconsistencies related to reporting.
These have to do with problems with filing the mandated regular reports, and a lack of contextual
data (i.e., metadata) being collected in a readily analyzable form. The DIB Software Metrics
Recommendations contain recommended best practices on data collection and metrics
definitions to not only capture data, but to establish standards meant to enhance software
development performance.

Cost and Schedule Data

The resulting list of contracts was prioritized based on the budget assigned to the software-
specific development efforts, and the top 46 contracts with the largest budgets were included in
this study. These 46 contracts covered roughly half of the total dollar scope for all development
programs in our dataset, and thus provided a reasonable sample size for our analysis. In addition,
35 contracts for smaller ACAT II and ACAT III software intensive Command and Control (C2) and
Automated Information System (AIS) programs were included in this analysis. This resulted in the
study capturing 81 total contracts valued at $17.9B in software development cost over the past

68

WORKING DOCUMENT//DRAFT

10 years (2008-2018). This study did not attempt to qualify or quantify the reasons for cost and
schedule growth, recognizing that growth is not always indicative of poor performance by the
program and/or contractor.

Figure 7. Results of Contract Selection Process

The 81 total contracts included in this analysis covered the portfolio of DoD programs, including
software intensive C2 and AIS programs as well as aircraft, radars, land vehicles, and missile
weapon systems, as shown in Figure 8.

Figure 8. Contracts Analyzed by Weapon System Type

Large Software Cost Growth

The analysis of IPMR data found that on average, the contracts experienced 138% cost growth.
The total combined value of the software development budgets within these contracts was $7.6B
at the time of initial reporting. By the time these contracts reported the latest (or in some cases,

69

WORKING DOCUMENT//DRAFT

final) performance baseline, the software development budget total grew by $10.4B. Based on
the analysis completed, significant software development cost growth was experienced across all
platform and program types, resulting in a second observation: In general, the DoD struggles to
minimize software development cost growth across the complete portfolio of projects. Figure 9
provides a summary of the 81 contracts evaluated, organized by project and by platform type.
Note that the cost growth of “C2 Program A05” was truncated in the figure as it was an outlier in
the analysis.

Figure 9. Contract Software Development Cost Growth by Program and by Platform

The study team used information provided by SARs and other relevant acquisition documentation
to calculate project schedule growth. Figure 10 illustrates both dimensions of cost and schedule
performance and identifies programs for which actual performance exceeds more than twice the
baseline cost and schedule. Two programs, “AIS Program A01” and “C2 Program A02,”
experienced cost or schedule growth so extreme that the bounds of the diagram axis plots were
exceeded. This figure also supports the second observation that recent software development
programs experience significant cost growth. The DIB SW Commandment 3 addresses cost
growth by advocating that software budgets be planned upfront to support the full lifecycle versus
the current funding lifecycle, defined around Planning, Programming, Budgeting, and Execution
(PPB&E).

70

WORKING DOCUMENT//DRAFT

Figure 10. Software Development Cost Growth vs. Program Schedule Growth

Long Planned Durations and Frequent Re-baselining

The third study observation results from a deeper look into programs with high cost growth. This
research found that in numerous instances, program baselines shifted (re-baselined) during the
contract period of performance. The contracts with what appear to be significant “re-rebaselining”
(i.e., multiple recurring increases to the expected cost) were analyzed in further detail.

SAR program milestones and available open source data were evaluated to provide a scale of
time and functionality. It is observed that the software development effort crosses the same
percent complete, as defined by the Earned Value Management (EVM) metric as the ratio of
Budgeted Cost of Work Performed (BCWP) to Budget at Completion (BAC), multiple times. This
represents an incremental method of adding cost, which is presumably associated with the
addition of technical scope and requirements, which can result in a doubling or tripling of the total
original budgeted value of the software development effort.

Figure 11 provides an example of this behavior, showing the “C2 Program A01” program effort
that appears to re-baseline several times. The software development effort crosses the same
percent complete point multiple times.

DIB Software Commandment 2 provides the recommendation that software development should
begin small, be iterative and build on success; otherwise, be terminated quickly. DoD programs
that take this approach are likely to see an improvement in performance once scope and
requirements can be delimited through successful iteration. The behavior demonstrated in Figure
11 seems to indicate that to some extent, at least some programs are already behaving in an
iterative way that better suits the technical work of software evolution. Unfortunately, our reporting
mechanisms are not suited to reflect this reality, and in fact cannot differentiate a reasonable
approach to incremental development from problematic cost or schedule growth. Looking just at
the top-line numbers, these instances could be interpreted as excessive cost growth on the
program, representing a problem from the Department’s point of view since the predictability of
performance against cost and schedule baselines are normally taken as indicators of success.

71

WORKING DOCUMENT//DRAFT

What this scenario seems to point to is a need to improve our metrics collection to better reflect
the underlying technical reality of software, where good performance often leads to a demand for
new capabilities and new scope, as well as better educating our decision makers about how to
interpret the results.

Thus this example provides more information about associated reporting issues tied to
observation 5, that budgets should be contracted to support the full, iterative lifecycle of the
software being procured with amounts definitized proportionally to the criticality and utility of the
software.

Figure 11. C2 Program A01 Performance Measurement Re-baselining

Agile Software Development Can Improve Program Performance

This study researched the performance of agile development methods that are implemented in
existing programs. IPMRs do not explicitly state the type of development effort being used
(incremental, agile, etc.). However, an article published in the journal Defense Acquisition
provided an instance where agile development was applied and considered a success story.
Although this article did not name the program, we were able to identify the most likely candidate,
“Aircraft Program A05,” by matching the timeline presented in the article against the timeline of
contracts that we could see in the program data.

The IPMR data for this program are shown in Figure 12. The contract work completed using an
agile approach are shown in blue and represent a 21% cost reduction when compared to the
initial budgeted value. This is in contrast to the contracts that seem to adopt a waterfall
development methodology, i.e., contracts with planned long durations, which are shown in shades
of orange and represent a 129% cost growth compared to the initial budgeted cost.

This analysis supports the fourth study observation that agile development may reduce cost
growth compared to more traditional waterfall approaches. The DIB SW Commandment 2 also

72

WORKING DOCUMENT//DRAFT

advocates that agile approaches seen in commercial development result in faster deployment of
functionality and cost savings which we observe in this instance.

Though a comparison of cost is one facet of performance, more research is required to increase
the certainty that better overall performance and results were achieved with agile methods.

Figure 12. Aircraft Program A05: Incremental vs. Agile Development Efforts

Cost and Schedule Analysis Summary

In important ways, this analysis was typical of other efforts that aim to use Department data to
examine the performance of acquisition. Due to the limited nature of the data available, our best
analyses typically take months to create, with substantial time needed to find the data, to collect
them, and to compile them into a structured format from multiple siloed and restricted systems.

The observations taken from data analysis of DoD program cost and schedule performance
support the supposition that the current state of software acquisition is highly problematic and
unsustainable relative to affordability and functionality. The DIB SW Commandments 2, 3, and 4
provide recommended measures to contain growth and increase the opportunity for cost savings
by detaching software development from a hardware manufacturing industrial model and
integrating software development and operations to quickly provide functionality to users and
meet changing needs dictated by a dynamic global environment.

The preceding sections have described specific conclusions from the analyses our team
conducted. Equally important, however, are the types of analyses we were unable to conduct
given the data that were available.

A notable omission is that the Department is unable to address questions of how much software
it has. Not in terms of software size but in terms of an index of how many important software
systems have been acquired or are being sustained by the Department: There is no DoD or
Service framework for describing the types of software intensive systems, or any inventory /

73

WORKING DOCUMENT//DRAFT

catalogue of the software in use. As a result, it is challenging to comprehend the scope and
magnitude of the DoD software enterprise, and to design appropriate solutions for issues such as
infrastructure or workforce that can meet the magnitude of the problem. Although done at a
smaller scale, NASA’s software inventory is an example of such an inventory model that is used
to make strategic decisions for a federal agency.14

There is a large and growing body of work on software analytics, the automated or tool-assisted
analysis of data about software systems (usually collected automatically) in order to make
decisions. Conferences such as Mining Software Repositories15 and Automated Software
Engineering16 annually showcase the best of the new research in these areas, and these methods
are having a practical impact in commercial and government environments as well. A summary
of software analytic applications lists several important questions that can be explored in this way:
to name just a few, “using process data to predict overall project effort, using software process
models to learn effective project changes, … using execution traces to learn normal interface
usage patterns, … using bug databases to learn defect predictors that guide inspections teams
to where code is most likely to fail.”17 Without access to its own software data, the DoD is missing
the opportunity to exploit another area of research that could provide practical benefit for
improving acquisition.

In a later section of this report (Appendix D), we provide the results of a small study that was
undertaken to demonstrate potential practical impacts that could be achieved if software data
access could be possible in the future.

14 NASA Engineering Handbook (https://swehb.nasa.gov/display/7150/SWE-006+-
+Agency+Software+Inventory#_tabs-6).
15 https://2018.msrconf.org/
16 http://ase-conferences.org/
17 T. Menzies and T. Zimmermann, "Software Analytics: So What?," in IEEE Software, vol. 30, no. 4, pp.
31-37, July-Aug. 2013. DOI: 10.1109/MS.2013.86

https://swehb.nasa.gov/display/7150/SWE-006%2B-%2BAgency%2BSoftware%2BInventory#_tabs-6
https://swehb.nasa.gov/display/7150/SWE-006%2B-%2BAgency%2BSoftware%2BInventory#_tabs-6
https://2018.msrconf.org/
http://ase-conferences.org/

74

WORKING DOCUMENT//DRAFT

75

WORKING DOCUMENT//DRAFT

Appendix D: Machine Learning Exploration

Linda Harrell, John Piorkoski, Phil Koshute, Erhan Guven, Marc Johnson (JHU/APL)
Vladimir Filkov, Farhana Sarkar, Guowei Yang, Anze Wang (UC Davis)

Steven Lee (Rotunda Solutions)
v0.2, 18 Feb 2019

D.1 Introduction
The Defense Innovation Board (DIB) Software Acquisition and Practices (SWAP) study chartered
an exploratory study to explore the use of modern tools in data analytics and Machine Learning
(ML) to provide insights into cost, time, and quality of Department of Defense (DoD) software
projects. The data analytics and ML effort were performed by a team from academia (University
of California Davis (UC-Davis)), a university affiliated research center (The Johns Hopkins
University Applied Physics Laboratory (JHU/APL)) and industry (Rotunda Solutions). Since a
suitable DoD data set was not available, the three teams leveraged existing data sets that were
readily available to perform ML experiments and quickly get results.

ML models were created to predict the cost, time, and other aspects of software projects and gain
a deeper understanding of the potential impact of project characteristics on overall project budget
and effort. The models were trained with different data sets and were constructed to predict
different performance metrics throughout the software development lifecycle.

The JHU/APL team developed ML models to predict software project duration and effort using
the commercially available International Software Benchmarking Standards Group (ISBSG)
Development and Enhancement (D&E) Repository of completed software projects. The UC-Davis
team developed ML models to forecast software project duration, effort, and popularity using the
publicly available GitHub repository of open-source projects. Finally, Rotunda Solutions created
a defect density ML model to capture the code complexity and predict potential risk of code
modules using a publicly available NASA dataset.

Additionally, the Rotunda Solutions team identified a number of opportunities for harnessing ML
and Artificial Intelligence (AI) to improve the software acquisition process during different phases
of the procurement cycle. This research effort is referred to as the Opportunities for Analytic
Intervention. Rotunda Solutions also started development of a conceptual mock-up to explore
some of these opportunities.

Overall, the three ML model development approaches demonstrated promising results aimed at
improving predictions of software cost, time, and quality during different life-cycle phases.

● The JHU/APL team identified features (software metrics) that can support predictions of
duration and effort at the project onset and shows that ML models have very good
accuracy even with as few as 5 to 15 important features, most of which can be easily
collected. It also shows how the prediction accuracy increases slightly by also including
the effort expended in different life-cycle phases (e.g., planning, specification, design,
build, test, and implementation). Since this analysis addresses the whole software
lifecycle, the APL effort is referred to as the Software Life-Cycle Prediction Model.

● The UC-Davis team shows how monitoring of software development activities over time
via automated tools that capture metrics (such as the number of lines of code, the number

76

WORKING DOCUMENT//DRAFT

of commits, and team size) can support accurate forecasts of duration, software effort
(SWE), and software popularity. Additionally, the UC-Davis analysis showed that the ML
models could obtain very good forecasting accuracy only 6 months after code
development has started. Hence the UC-Davis ML model can serve as an early warning
indicator. Since this analysis leveraged data obtained during software development
activities to forecast future outcomes, it is referred to as the Software Development
Forecasting Model.

● The Rotunda Solutions defect density model automatically processed code files and
output code complexity metrics to aid efficient resource allocations and risk mitigation.

Interestingly, despite the differences in the approaches taken by JHU/APL and UC-Davis, the
teams shared similar conclusions. For instance, both teams identified the team size and the
project timing as being important features for the predictions.

Section D.2 of this document describes the methodology applied to the APL Software Life-Cycle
Prediction Model and the UC-Davis Software Development Forecasting Model. Section D.3
summarizes the major findings of all three analyses. Section 4 offers implications of these study
results for DoD programs.

D.2 Methodology

The approaches taken for the APL Software Life-Cycle Prediction Model and the UC-Davis
Software Development Forecasting Model were complementary. Table 2.1 summarizes key
aspects of the two approaches. These aspects include:

ML Techniques. Both studies leveraged readily available commercial or open- source ML
techniques. This enabled the teams to meet the task’s quick reaction turn-around timeline and
also ensures that DoD government personnel and contractors can apply a similar approach when
they develop their own prediction models for software projects. Although the teams developed
several types of ML models, this report focuses on those with the best results: the APL Random
Forest (RF) and the UC-Davis Neural Network (NN) models.

Data Sets. The APL team leveraged the 2018 International Software Benchmarking Standards
Group (ISBSG) Development and Enhancement (D&E) Repository of completed software
projects. This diverse database contains thousands of software projects that are described by a
rich set of features that span the whole software lifecycle, but most of these projects have less
than one year in duration or less than two years of effort. The UC-Davis team mined the GitHub
collaborative project development and repository site, which contains historical trace data
captured from millions of open-source software projects. The resulting database includes
hundreds of thousands projects of various sizes. Its feature set is not as rich as in the ISBSG
database, but it automatically tracks development metrics including commits, discussions, and
other activities.

Target Variables. The APL team focuses on predicting software project duration and effort, two
of the three metrics of greatest interest to the DIB. On the other hand, the UC-Davis team aims
to predict the project duration (via its proxy months committed), the number of software commits
(which is an incomplete proxy for software effort), and the number of stars (which is an indicator
of the popularity of a project in GitHub).

77

WORKING DOCUMENT//DRAFT

Project Tiers and Boundaries. Large differences between proposal estimates and actual
outcomes for software development duration and effort cause the biggest challenges for the DoD;
small deviations are much more manageable. To reflect this perspective, both studies gathered
their target variables into discrete tiers with boundaries shown in Figure 2.1.

Performance Metrics. Both studies assessed the performance of their models with confusion
matrices (which shows the distribution of predictions in terms of predicted and actual tiers) and
overall accuracy.

Table 2.1. Key Aspects of APL and UC-Davis Studies

Parameter APL Software Life-Cycle
Prediction Model

UC-Davis Software Development
Forecast Model

Data Set 2018 ISBSG D&E Repository 2018 GitHub Repository
Number of Projects
(after preprocessing) 2,818 Approx. 127,000

Number of Features
(after reduction) 176 36

Target
Variables for
…

Duration Project Duration Months Committed

Effort Effort Total Number of Commits

Popularity N/A Number of Stars

ML Techniques Off-the-shelf
(NB, SVM, RF)

Off-the-shelf
(MR, NB, RF, NN)

Results:
Overall Accuracy;
Confusion Matrices

Overall accuracy: Yes
Confusion Matrix: 4 tier

Overall accuracy: Yes
Confusion Matrix: 5 tier

Prediction Snapshots

Early concept development and
procurement;
Software development in process

After 6 months of software
development ;
Most recent software development

Feature Reduction Yes Yes

Definitions: NB = Naive Bayes, SVM = Support Vector Machines, MR = Multivariate Regression, NN = Neural Networks

Figure 2.1. Classification Tier Boundaries

Prediction/Forecasting Snapshots. APL made predictions at two project phases (snapshots). The
first snapshot is at onset, which includes features that are available or can be estimated during
the concept, proposal, and procurement stage. The second is after software development has

78

WORKING DOCUMENT//DRAFT

been underway; it can include additional features as they become available. UC-Davis made
predictions at three snapshots, corresponding to the time elapsed for each project: 6 months from
first commit, 12 months from first commit, and most recent snapshot (1/1/2018). The most recent
snapshot is taken to be the actual outcome (even if the project is still under development). For
simplicity, the results with the 12-month snapshot are not discussed herein.

Feature Importance Ranking and Reduction. The APL RF and UC-Davis NN models both
determined feature importance by evaluating the importance of each feature to the overall
accuracy prediction and developed corresponding models with only the top ranked features.

Pre-Processing and Feature Selection. The pre-processing actions taken by the APL and UC-
Davis are discussed in separate reports.

Project Context (Cluster) Creation. To fine-tune their predictive models, UC-Davis used an
Autoencoder NN to group projects into four similarity clusters (i.e., contexts). A separate model
NN was trained for each cluster. This technique allows for greater accuracy when project context
is known early on, by, for example, tracking project metrics from the start.

D.2 Key Results and Findings

APL Software Life-Cycle Prediction Model

Table 3.1 shows the performance of the APL models that predict software project duration and
effort with all features included. Even with minimal data cleaning, model tweaking, or sensitivity
studies, and using a very sparse and unevenly distributed data set, the ML models predict a
project’s size tier with an overall accuracy ranging from 57% to 74%. These are impressive results
for a quick-turnaround exploratory analysis.

As expected, the prediction estimates once development is underway are better than the
predictions at program onset. This is because additional features, such as the effort expended in
various life-cycle phases, help to improve predictions. However, with the features included in this
analysis, the improvement was slight.

Even when the ML model does not correctly predict the size of the software project, the prediction
is most often in adjacent tiers rather than significantly further away. This is evident in the
confusion matrix in Table 3.2 and the additional confusion matrices provided in separate reports.
This is important because it indicates that incorrect predictions still tend to be fairly close (e.g., an
extra large project predicted as large or vice versa).

Table 3.1. Performance Summary for APL Prediction Models (with all features)

Model Overall Accuracy
Predicting Duration at Project Onset 57%
Predicting Duration after the Project is
Underway 58%

Predicting Effort at Project Onset 68%
Predicting Effort after the Project is Underway 74%

79

WORKING DOCUMENT//DRAFT

Table 3.2. APL Confusion Matrix for Predicting Effort as Project is Underway (with all features)

Accuracy values are shown as a percent of all

projects of a given class
Predicted Class

S M L XL

Actual Class

Small (S) 80

18

2

0.1

Medium (M) 23 59

18

0.6

Large (L)

2 20 73

5

Extra Large (XL)

0.1

0.8 14 85

Table 3.3 identifies the most important features that influence the predictions. Naturally, the
ranking of importance for each feature varies slightly for the predictions of duration and effort and
for the two different phases (at project onset versus while the software development is underway),
but the discrepancies are generally slight. Encouragingly, the features in this table are generally
easy to obtain or estimate: function point standards, team size, software type, project
implementation date, scope, programming language. The only feature category that is time
consuming to gather is the functional size estimate. Each of the features in these tables is further
described in the APL report.

Table 3.3 Most Important Features for ML Accuracy Predictions

Category of Feature Most Important Features Project Phase

Software Size Functional Size, Relative Size, Adjusted Function
Points Project Onset

Standards for Function
Point Estimates Function Point Standards, Count Approach Project Onset

Team Maximum Team Size, Team Size Project Onset

Type of Software Industry Sector, Organization Type, Application
Type, Business Area Project Onset

Timing Year of Project, Implementation Date Project Onset
Scope Project Activities, Development Type Project Onset
Programming
Language

Primary Programming Language,
Language Type, Development Platform Project Onset

Incremental Effort

Effort in the Planning Phase, Effort in Specify
Phase, Effort in Design Phase, Effort in Build
Phase, Effort for Implementation, Effort in Test
Phase

When the Project is
Underway

Cost Total Project Cost When the Project is
Underway

Figure 3.1 depicts the accuracy prediction with small subsets of the most important features, and
shows how the accuracy increases as additional features are added. This figure shows that
although the database includes 176 features, very good predictions can be obtained using only
as few as 5 to 15 features. These features are captured in Table 3.3.

80

WORKING DOCUMENT//DRAFT

Figure 3.1. Accuracy of APL’s Software Project Duration and Software Effort (with reduced,

prioritized feature set)

The APL Software Life-Cycle Prediction model results clearly show that ML models can quickly
be developed and trained using only a relatively small number of projects, a very small number
of features, and a large amount of missing data. Furthermore, the resulting predictions for a
software project’s duration and total effort can be reasonably accurate at the project onset, and
can then improve slightly over time by tracking the effort that is expended over the lifecycle. Only
about 5 to 15 features are required to achieve reasonable predictions. The most important
features for the predictions were identified; most of them are easy to obtain or estimate.

UC-Davis Software Development Forecasting Model

UC-Davis developed models that predict project duration, number of commits, and popularity
using all available historical data of completed projects in the January 2018 snapshot, starting
from the first commit of software. Table 3.4 shows the best-case overall prediction accuracies
that can be obtained with these models and all of this data. The best-case overall accuracy of
the prediction estimate for project duration is 84% and the best-case overall accuracy of the
prediction estimate for the number of commits is 72%. Predictions for popularity were less
accurate. These results indicate that the features in the GitHub database will be very useful for
predicting software project duration and to a lesser extent the predictions for the number of
commits. It appears that additional features will be necessary to improve the predictions for
software popularity.

Additionally, Table 3.4 also shows that the best-case overall accuracy results for these models
vary for different context clusters of similar projects. For instance, the accuracy values for each
target variable increase within certain clusters; accuracy is greater in Cluster 1 by 16% for project
duration and by 24% for number of commits and in Cluster 4 by 13% for popularity. These
increases suggest that clustering projects based on similar context can increase the best-case
prediction accuracy and that different models may be necessary to best predict different project
contexts. The descriptions of these different clusters are not available at this time, but it would
be valuable to investigate this further in order to understand the project characteristics that
distinguish the clusters.

81

WORKING DOCUMENT//DRAFT

Table 3.5 shows the best-case overall accuracy of the UC-Davis models that use only the 9 most
important features from the full project lifetime. These results are very close to those of the
models that use all available features, indicating that the reduced feature set is sufficient for
accurate predictions.

Table 3.4. Full Lifetime (Best-Case) Prediction Accuracy

Target Variable All Projects Cluster 1 Cluster 2 Cluster 3 Cluster 4
Number of Projects 126,799 21,462 31,918 55,065 18,354
Project Duration
(months committed) 84% 99.5% 83% 80% 78%

Number of Commits 72% 96% 70% 62% 69%
Popularity (number of
stars) 49% 46% 48% 42% 62%

Table 3.5. Full Lifetime (Best-Case) Prediction Accuracy with Reduced Feature Set

Target Variable All Features
(All Clusters)

9 Most Important Features
(All Clusters)

Project Duration (months committed) 84% 84%

Number of Commits 72% 74%
Popularity (number of stars) 49% 48%

Table 3.6 shows the accuracy results of the forecasting models, which predict the target variable
in the final snapshot using features from a snapshot taken 6 months after project starts. These
results are averaged over each of the 4 clusters (i.e., include 126,799 projects). These forecasting
results show that data from only the first 6 months into a project can predict future outcomes,
reaching accuracies of approximately 50% for both project duration and number of commits.
Table 3.7 identifies the most important features that influenced the UC-Davis predictions and
forecasting. This table shows that features related to teams and commit activity are the most
important for the UC-Davis models.

Table 3.6. Forecasting Accuracy (Averaged Over All Clusters)

Target Variable

Prediction of target variable at
last snapshot given 6 month

snapshot
Prediction of target variable at

last snapshot given all data

Project Duration
(months committed) 53% 84%

Number of Commits 50% 72%

Popularity (number of stars) 41% 49%

Table 3.7. Most Important Features for the UC-Davis Predictions and Forecasting

Feature Category Most Important Features
Commit Activity Data First Commit Date, Months Committed

82

WORKING DOCUMENT//DRAFT

Team Member Data

Team Size, Number of Commenters, Number of Pull Request Mergers,
Average Months Active, Standard Deviation (SD) Months Active, Average
Commits per Month, SD Commits per Month

In summary, the UC-Davis analysis shows excellent results for being able to forecast project
duration and the number of commits only 6 months into a project. Only 9 features are required to
achieve these forecasts. The most important features for the predictions were identified; all of
them easily obtained with automation tools that track software development activities.
Additionally, UC-Davis uncovered clusters of projects that if better understood could lead to
improved models and accuracy predictions.

Rotunda Solutions Investigation of Opportunities for Analytic Intervention

The Rotunda Solutions effort focused on identifying strategic opportunities to leverage ML and AI
at key points in the overall DoD procurement process. It extended academic research and state-
of-the-art quality management principles to identify opportunities to improve the likelihood of
successful software development outcomes. It also developed initial conceptual mock-ups to
explore potential applications, including a defect prediction platform.

Rotunda Solutions adopted a basic stage-gate model to represent the general structure and
stages of a DoD procurement and project development effort. Multiple opportunities are identified
in each stage where analytics, ML, and other modern techniques can assist project managers.
First, analytics can provide metrics and insights to support the project manager’s yes/no/hold
decision for whether the project should move to the next development stage. Second, analytics
and ML can facilitate the search and interpretation of DoD procurement and development data
sets so that decision makers have better access to historical data. Third, analytics can be run on
this historical data to provide insights that can inform future projects. The application of modern
techniques within a basic stage-gate model for a typical DoD procurement and development
project can be envisioned as follows.

Stage 1: Idea Generation/Need Analysis. Analyze the internal unstructured documents from the
program office and communications between suppliers and procurement officials. Then apply
problem identification analytics to define the problem to be solved, considering the following 5
major groups/factors: need spotting, solution spotting, mental invention, market research, and
trend. The literature shows a clear trend in savings of time and resources during the development
process by maximizing the effectiveness of the idea generation stage.

Stages 2 and 3: Proposal Development and Response. Analyze internal unstructured documents
from the program office and communications as they relate to proposal development and
response. Use qualitative techniques such as focus groups, in-depth interviews, and surveys to
determine factors associated with development success and failure. Additionally, use natural
language processing (NLP) techniques to prepare the documents for further analysis. Both
methods can identify key mechanisms and characteristics of software development success.

Stage 4: Contract and Award. Identify keywords through analysis of prior software contracts. Use
NLP and topic extraction on legal documents surrounding the final selection of the supplier,
contract vehicles, set-asides, and all stipulations to determine content. This can increase the
ease of detecting associations between numerous demographic and supplier characteristics and

83

WORKING DOCUMENT//DRAFT

software development performance. It also provides the ability to build a grading system and
general profile of contractors and their performance on projects.

Stage 5: Software Development. Gather representative data regarding project management
metrics, code base, and development metrics, and compile a list of metrics that can help identify
the likelihood of success of a DoD software development project. This helps the DoD in two ways:
first by identifying projects that are likely to succeed or fail in each stage; and second by informing
cost and time estimates for future software acquisition projects. Alternatively, analyze code to
inform the development of ML tools to assist project managers and developers understand the
state of their code. Potential benefits of this analysis include tools that can rapidly identify errors
and increase efficiency for automation, audits, process checkpoints, and standardization.

Stage 6: Implementation. Harness available information on users, development, delivery
personnel, and performance metrics of the software system. Measure the efficacy of the deployed
or implemented software systems through metrics such as dependability, system performance,
extensibility, and cross-platform functionality. This provides a post-mortem analysis of the
efficiency and effectiveness of the software and the development process, allowing DoD to learn
from past experience and increase the likelihood of future development success.

Conceptual Mock-Ups

Rotunda Solutions aims to help the DoD in four ways: (1) understand the potential impact of
variables, decisions, and project characteristics on project budget and effort, based on historical
data of similar projects; (2) make data-informed project decisions pertaining to the adjustment of
project structure, methods, and other details; (3) create and explore what-if scenarios to promote
better planning; and (4) encourage transparency and traceability of factors and decision-points
affecting project performance. To this end, a number of concepts offer potential for further
development and exploration. For instance, the concept of an “intelligent” burn-down chart is
especially intriguing. Given sufficient sprint data and historical trend data, effort estimation tools
and ML algorithms can be leveraged to make real-time predictions and issue alerts when
estimates of team effort needs a closer review. Also, a defect prediction algorithm may be able
to support risk mitigation activities and improve resource allocations.

Focus Area: Defect Prediction Platform

Software defect prevention is an essential part of the quality improvement process; timely
identification of defects is important for efficient resource allocation, increased productivity, and
risk mitigation, yet complete testing of an entire system is generally not feasible due to budget
and time constraints. Studies show that the majority of software bugs are often contained within
a small number of modules. To more rapidly identify these modules, Rotunda Solutions
developed a system to automatically process code files and output code complexity metrics. They
built off extensive industry research and tested representative NASA software modules using NN,
SVM, Gaussian mixtures, and ensembles of ML techniques. The NN model performed best and
was selected for production.

The NN model consists of 8 hidden layers, each layer becoming smaller until converging on a
single probability to represent the existence of defects in the file. This model learns to assign
importance weights to each of the 17 features and to combine these features in non-linear ways

84

WORKING DOCUMENT//DRAFT

to identify any potential defects. The NN can then be used to give a probability of defects for
future files. This could help the management team in three ways: (1) to recognize the likeliest
modules to have defects and allocate corrective resources effectively; (2) to provide an overview
of the riskiest code modules to identify opportunities to re-architect the application; and (3) to
understand the risk of deployment in production by an automated code complexity review.

Conclusions

The Rotunda Solutions exploration outlined the potential benefits of harnessing ML/AI throughout
the DoD software acquisition lifecycle. These benefits include increased accuracy of budget
predictions, comprehensive planning, mitigation of expensive defects, and transparency.
Rotunda Solutions also identified many opportunities and applications that may improve DoD
software development and estimation practices.

D.3 Implications of the Study Results for DoD

This ML study demonstrated promising results by creating models with publicly available software
project data. It uncovered a promising approach (the APL Life-Cycle Prediction Model) that can
be used to develop good predictions of software duration and effort in the early stages of software
procurement and development. The study also uncovered another approach (the UC-Davis
Forecasting Model) that can further improve project estimates once software development has
been underway for 6 months or more. Finally, the Rotunda Solutions defect density model can
highlight modules requiring additional resources and risk mitigation efforts.

The generalizability of these models to DoD software projects requires validation. For instance,
a pilot study could be conducted with a small subset of DoD projects. Ultimately, strategies can
be developed to enable DoD leadership to effectively leverage ML models.

One strategy could entail a strong centralized mandate for DoD software development teams to
provide project data to DoD oversight personnel for evaluation with the APL and UC-Davis
models.

A second, more streamlined and evolutionary strategy is to provide these models as tools for DoD
software development teams to use as part of best practices to guide their development
plans. This strategy would alleviate the exchange of data and would allow a more collaborative
community effort to refine the models and resulting software development performance over time.

D.4 Caveats and Limitations
It is important to note that there are significant differences between the software repositories
used in this work and important classes of software acquired by the DoD. For example,
embedded software used in DoD weapons platforms is typically marked by high complexity, with
low tolerance for reliability, availability, safety, and security issues. Although the testbeds on
which the ML approaches were applied do contain some NASA software, only a small subset at
best of the systems providing data are expected to have similar characteristics. As a result, it is
important to view these results as showing a potential method that would be applicable to DoD
programs and could learn characteristics of interest within that environment. While the method
may be of interest, the specific results summarized may not directly carry over to some types of
software present in the DoD environment.

	Software is Never Done:
	SUPPORTING INFORMATION
	Contents:

	Appendix B.1: Acquisition Strategy Subgroup Report
	Appendix B.2:
	Appendix B.3: Contracting Subgroup Report
	Pain Points
	Desired state
	Obstacles
	Ideas for change
	Proposed Legislative/Regulatory Language
	(i)
	(ii)
	(I)
	(II)
	(D)Applicability of Procurement Ethics Requirements.—
	(A)
	(B)
	(A)
	(B)
	(C)
	(D)
	(2)
	(i)
	(ii)
	(2) Payments (a)Advance Payments.—
	(b) Recovery of Funds.— (1)
	(2)
	(c)Support Accounts.—
	(3) Education and Training.
	(1)
	(2)
	(4) Regulations.—
	(i) Protection of Certain Information From Disclosure.— (1)
	(2)
	(i)
	(5) Records
	(2)
	(3)
	(B)
	(4)
	(5)
	(6) Definitions.
	(1)
	(2)
	(a) Follow-on Contracts or Transactions.— (1)
	(A)
	(B)
	(3)
	(4)
	(5)
	(b) Authority To Provide Prototypes and Follow-on Production Items as Government- furnished Equipment.—
	Proposed Policy for Implementation:

	Appendix B.4:
	Appendix B.5: Infrastructure Working Group Report
	Pain Points and Obstacles
	Desired State
	Obstacles
	Ideas for change
	Proposed Legislative/Regulatory Language

	Appendix B.6: Sustainment / Modernization Subgroup Report
	Pain points
	Ideas for Change

	● Revisions to the Definition of Depot-Level Maintenance and Repair
	§2460. Definition of depot-level maintenance and repair
	Appendix B.7: Requirements Subgroup Report
	Pain points
	Ideas for Change
	Potential DRAFT Legislative/Regulatory Language

	Appendix B.8: Security Accreditation/Certification Subgroup Report
	Pain points
	Desired state
	Obstacles
	Ideas for change

	Appendix B.9: Test and Evaluation Subgroup Report
	Pain Points and Obstacles
	Desired state
	Ideas for change

	Appendix B.10: Workforce Subgroup Report
	Pain Points
	Desired State
	Obstacles
	Ideas for Change
	Proposed Legislative/Regulatory Language

	Appendix C: Analysis the Old Fashioned Way:
	C.1 Data Used in This Analysis
	C.2 Software Development Project Analysis
	C.3 Software Development Data Analyses
	Appendix D: Machine Learning Exploration
	D.1 Introduction
	D.2 Methodology
	D.2 Key Results and Findings
	D.3 Implications of the Study Results for DoD
	D.4 Caveats and Limitations

